Real-time optimization meets Bayesian optimization and derivative-free optimization: A tale of modifier adaptation

[1]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[2]  Gene A. Bunin On the equivalence between the modifier-adaptation and trust-region frameworks , 2014, Comput. Chem. Eng..

[3]  R. Agrawal Sample mean based index policies by O(log n) regret for the multi-armed bandit problem , 1995, Advances in Applied Probability.

[4]  Panagiotis D. Christofides,et al.  Machine learning‐based predictive control of nonlinear processes. Part I: Theory , 2019, AIChE Journal.

[5]  Hans-Martin Gutmann,et al.  A Radial Basis Function Method for Global Optimization , 2001, J. Glob. Optim..

[6]  I. Grossmann,et al.  An algorithm for the use of surrogate models in modular flowsheet optimization , 2008 .

[7]  Stephen Piche,et al.  Nonlinear model predictive control using neural networks , 2000 .

[8]  Jeffrey Larson,et al.  Stochastic derivative-free optimization using a trust region framework , 2016, Comput. Optim. Appl..

[9]  Dominique Bonvin,et al.  Adaptation strategies for real-time optimization , 2009, Comput. Chem. Eng..

[10]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[11]  Coralia Cartis,et al.  Improving the Flexibility and Robustness of Model-based Derivative-free Optimization Solvers , 2018, ACM Trans. Math. Softw..

[12]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[13]  Derek Machalek,et al.  Real-time optimization using reinforcement learning , 2020, Comput. Chem. Eng..

[14]  Christine A. Shoemaker,et al.  Global Convergence of Radial Basis Function Trust-Region Algorithms for Derivative-Free Optimization , 2013, SIAM Rev..

[15]  Achim Kienle,et al.  Global optimization of distillation columns using explicit and implicit surrogate models , 2019, Chemical Engineering Science.

[16]  R. Bhushan Gopaluni,et al.  Deep Reinforcement Learning for Process Control: A Primer for Beginners , 2020, ArXiv.

[17]  Lorenz T. Biegler,et al.  Advanced trust region optimization strategies for glass box/ black box models , 2018, AIChE Journal.

[18]  Isaac Siwale ON GLOBAL OPTIMIZATION , 2015 .

[19]  J. Kocijan,et al.  Gaussian process model based predictive control , 2004, Proceedings of the 2004 American Control Conference.

[20]  R. A. Miller,et al.  Sequential kriging optimization using multiple-fidelity evaluations , 2006 .

[21]  Charles Audet,et al.  A progressive barrier derivative-free trust-region algorithm for constrained optimization , 2016, Comput. Optim. Appl..

[22]  Dongda Zhang,et al.  Reinforcement Learning for Batch Bioprocess Optimization , 2019, Comput. Chem. Eng..

[23]  Boris Houska,et al.  Real-time Algorithm for Self-Reflective Model Predictive Control , 2016, 1611.02408.

[24]  Sebastião Feyo de Azevedo,et al.  Hybrid semi-parametric modeling in process systems engineering: Past, present and future , 2014, Comput. Chem. Eng..

[25]  Dominique Bonvin,et al.  Use of transient measurements for the optimization of steady-state performance via modifier adaptation , 2014 .

[26]  Christos T. Maravelias,et al.  Surrogate‐based superstructure optimization framework , 2011 .

[27]  Piotr Tatjewski,et al.  ITERATIVE OPTIMIZING SET-POINT CONTROL – THE BASIC PRINCIPLE REDESIGNED , 2002 .

[28]  K. Willcox,et al.  Constrained multifidelity optimization using model calibration , 2012, Structural and Multidisciplinary Optimization.

[29]  Katya Scheinberg,et al.  Stochastic optimization using a trust-region method and random models , 2015, Mathematical Programming.

[30]  Grégory François,et al.  Real-time optimization via modifier adaptation of closed-loop processes using transient measurements , 2020, Comput. Chem. Eng..

[31]  Christodoulos A. Floudas,et al.  ARGONAUT: AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems , 2017, Optim. Lett..

[32]  Bjarne A. Foss,et al.  MPC-based dual control with online experiment design , 2015 .

[33]  Sebastian Engell,et al.  Guaranteed Model Adequacy for Modifier Adaptation With Quadratic Approximation , 2020, 2020 European Control Conference (ECC).

[34]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[35]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[36]  Robert R. Bitmead,et al.  Persistently exciting model predictive control , 2014 .

[37]  Lorenz T. Biegler,et al.  A trust region filter method for glass box/black box optimization , 2016 .

[38]  Dominique Bonvin,et al.  A Directional Modifier-Adaptation Algorithm for Real-Time Optimization , 2016 .

[39]  Colin Neil Jones,et al.  Real-Time optimization of Uncertain Process Systems via Modifier Adaptation and Gaussian Processes , 2018, 2018 European Control Conference (ECC).

[40]  Bjarne Foss,et al.  Steady-state real-time optimization using transient measurements , 2018, Comput. Chem. Eng..

[41]  Michael Nikolaou,et al.  RTO: An overview and assessment of current practice , 2011 .

[42]  Grégory François,et al.  Modifier Adaptation for Real-Time Optimization—Methods and Applications , 2016 .

[43]  Lukas Hewing,et al.  Learning-Based Model Predictive Control: Toward Safe Learning in Control , 2020, Annu. Rev. Control. Robotics Auton. Syst..

[44]  Alberto Costa,et al.  RBFOpt: an open-source library for black-box optimization with costly function evaluations , 2018, Mathematical Programming Computation.

[45]  H. Robbins,et al.  Asymptotically efficient adaptive allocation rules , 1985 .

[46]  Dominique Bonvin,et al.  From Discrete Measurements to Bounded Gradient Estimates: A Look at Some Regularizing Structures , 2013 .

[47]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[48]  Håkan Hjalmarsson,et al.  Model predictive control with integrated experiment design for output error systems , 2013, 2013 European Control Conference (ECC).

[49]  Benoît Chachuat,et al.  Modifier-Adaptation Schemes Employing Gaussian Processes and Trust Regions for Real-Time Optimization , 2019 .

[50]  Byung Jun Park,et al.  A model-based deep reinforcement learning method applied to finite-horizon optimal control of nonlinear control-affine system , 2020 .

[51]  José A. Caballero,et al.  Rigorous design of distillation columns using surrogate models based on Kriging interpolation , 2015 .

[52]  Katya Scheinberg,et al.  Global Convergence of General Derivative-Free Trust-Region Algorithms to First- and Second-Order Critical Points , 2009, SIAM J. Optim..

[53]  Dominique Bonvin,et al.  A Dual Modifier-Adaptation Approach for Real-Time Optimization , 2010 .

[54]  Nikolaos V. Sahinidis,et al.  The ALAMO approach to machine learning , 2017, Comput. Chem. Eng..

[55]  Stefan M. Wild,et al.  Derivative-free optimization methods , 2019, Acta Numerica.

[56]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[57]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[58]  Moritz Diehl,et al.  CasADi: a software framework for nonlinear optimization and optimal control , 2018, Mathematical Programming Computation.

[59]  Fabio dos Santos Liporace,et al.  Assessing the reliability of different real‐time optimization methodologies , 2016 .

[60]  Björn Wittenmark,et al.  Adaptive Dual Control Methods: An Overview , 1995 .

[61]  Karen Willcox,et al.  Provably Convergent Multifidelity Optimization Algorithm Not Requiring High-Fidelity Derivatives , 2012 .

[62]  Luis A. Ricardez-Sandoval,et al.  Explicit model predictive controller under uncertainty: An adjustable robust optimization approach , 2019 .

[63]  Mark A. Kramer,et al.  Modeling chemical processes using prior knowledge and neural networks , 1994 .

[64]  Victor Picheny,et al.  Bayesian optimization under mixed constraints with a slack-variable augmented Lagrangian , 2016, NIPS.

[65]  Casimir C. Klimasauskas,et al.  Hybrid modeling for robust nonlinear multivariable control , 1998 .

[66]  Lorenz T. Biegler,et al.  Multi-scale optimization for process systems engineering , 2014, Comput. Chem. Eng..

[67]  Jonas Mockus,et al.  On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.

[68]  Dominique Bonvin,et al.  Directional Input Adaptation in Parametric Optimal Control Problems , 2012, SIAM J. Control. Optim..

[69]  Panagiotis D. Christofides,et al.  Real-Time Optimization and Control of Nonlinear Processes Using Machine Learning , 2019, Mathematics.

[70]  Sebastian Engell,et al.  Iterative set-point optimization of batch chromatography , 2005, Comput. Chem. Eng..

[71]  José Carlos Pinto,et al.  Performance Evaluation of Real Industrial RTO Systems , 2016 .

[72]  Sebastian Engell Feedback control for optimal process operation , 2007 .

[73]  Daniel Navia,et al.  Modifier-Adaptation Methodology for Real-Time Optimization Reformulated as a Nested Optimization Problem , 2015 .

[74]  Warren B. Powell,et al.  The Knowledge-Gradient Policy for Correlated Normal Beliefs , 2009, INFORMS J. Comput..

[75]  Lars Imsland,et al.  Nonlinear model predictive control with explicit back-offs for Gaussian process state space models , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[76]  Rolf Findeisen,et al.  Stability of Gaussian Process Learning Based Output Feedback Model Predictive Control , 2018 .

[77]  Ishan Bajaj,et al.  A trust region-based two phase algorithm for constrained black-box and grey-box optimization with infeasible initial point , 2017, Comput. Chem. Eng..

[78]  Katya Scheinberg,et al.  Convergence of Trust-Region Methods Based on Probabilistic Models , 2013, SIAM J. Optim..

[79]  Dominique Bonvin,et al.  Modifier-adaptation methodology for real-time optimization , 2009 .

[80]  Sebastian Engell,et al.  A study of model adaptation in iterative real-time optimization of processes with uncertainties , 2019, Comput. Chem. Eng..

[81]  Christine A. Shoemaker,et al.  ORBIT: Optimization by Radial Basis Function Interpolation in Trust-Regions , 2008, SIAM J. Sci. Comput..

[82]  Sebastian Engell,et al.  A reliable modifier-adaptation strategy for real-time optimization , 2016, Comput. Chem. Eng..

[83]  Martand Singhal,et al.  Real-Time Optimization Based on Adaptation of Surrogate Models , 2016 .

[84]  Lars Imsland,et al.  Stochastic data-driven model predictive control using Gaussian processes , 2019, Comput. Chem. Eng..

[85]  Thomas E. Marlin,et al.  Model adequacy requirements for optimizing plant operations , 1994 .

[86]  Design Methodology of Modifier Adaptation for On-Line Optimization of Uncertain Processes , 2011 .

[87]  Jong Min Lee,et al.  Experimental gradient estimation of multivariable systems with correlation by various regression methods and its application to modifier adaptation , 2018 .