Bolidophyceae, a Sister Picoplanktonic Group of Diatoms – A Review

Pico- and nano-phytoplankton (respectively, 0.2-2 and 2-20 µm in cell size) play a key role in many marine ecosystems. In this size range, Bolidophyceae is a group of eukaryotes that contains species with cells surrounded by 5 or 8 silica plates (Parmales) as well as naked flagellated species (formerly Bolidomonadales). Bolidophyceae share a common ancestor with diatoms, one of the most successful groups of phytoplankton. This review summarizes the current information on taxonomy, phylogeny, ecology and physiology obtained by recent studies using a range of approaches including metabarcoding. Despite their rather small contribution to the phytoplankton communities (on average less than 0.1%), Bolidophyceae are very widespread throughout marine systems from the tropics to the pole. This review concludes by discussing similarities and differences between Bolidophyceae and diatoms.

[1]  G. Walker-Arnott What are Marine Diatoms , 1859 .

[2]  C. C. Bowen,et al.  FINE STRUCTURE OF THE DIATOM AMPHIPLEURA PELLUCIDA. II. CYTOPLASMIC FINE STRUCTURE AND FRUSTULE FORMATION , 1965 .

[3]  Y. Hotta,et al.  Cell Division , 2021, Nature.

[4]  J. Ryther Photosynthesis and fish production in the sea. , 1969, Science.

[5]  W. Darley,et al.  Role of silicon in diatom metabolism. A silicon requirement for deoxyribonucleic acid synthesis in the diatom Cylindrotheca fusiformis Reimann and Lewin. , 1969, Experimental cell research.

[6]  T. Slankis,et al.  THE FINE STRUCTURE OF MITOSIS AND CELL DIVISION IN THE CHRYSOPHYCEAN ALGA OCHROMONAS DANICA 1 , 1972 .

[7]  D. R. Markey,et al.  The ultrastructure of reproduction in the brown alga Pylaiella littoralis. I. Mitosis and cytokinesis in the plurilocular gametangia. , 1975, Protoplasma.

[8]  J. Pickett-Heaps,et al.  Mitosis in the pennate diatom Surirella ovalis , 1977, The Journal of cell biology.

[9]  P. Heywood Ultrastructure of mitosis in the chloromonadophycean alga Vacuolaria virescens. , 1978, Journal of cell science.

[10]  T. Okita,et al.  Role of silicon on diatom metabolism. IX. Differential synthesis of DNA polymerases and DNA-binding proteins during silicate starvation and recovery in Cylindrotheca fusiformis. , 1978, Biochimica et biophysica acta.

[11]  J. Waterbury,et al.  Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium , 1979, Nature.

[12]  B. C. Booth,et al.  Siliceous nanoplankton I. Newly discovered cysts from the Gulf of Alaska , 1980 .

[13]  D. L. Ringo,et al.  Siliceous nanoplankton. II. Newly discovered cysts and abundant choanoflagellates from the Weddell Sea, Antarctica , 1980 .

[14]  I. Heath Variant mitoses in lower eukaryotes: indicators of the evolution of mitosis. , 1980, International review of cytology.

[15]  Paul W. Johnson,et al.  IN‐SITU MORPHOLOGY AND OCCURRENCE OF EUCARYOTIC PHOTOTROPHS OF BACTERIAL SIZE IN THE PICOPLANKTON OF ESTUARINE AND OCEANIC WATERS 1 , 1982 .

[16]  J. G. Field,et al.  The Ecological Role of Water-Column Microbes in the Sea* , 1983 .

[17]  J. Pickett-Heaps,et al.  VALVE MORPHOGENESIS IN THE PENNATE DIATOM NAVICULA CUSPIDATA 1 , 1984 .

[18]  L. Hoffman,et al.  MITOSIS AND CELL DIVISION IN HYDRURUS FOETIDUS (CHRYSOPHYCEAE) 1 , 1984 .

[19]  H. Marchant,et al.  Electron microscopy of gut contents and faeces of Euphausia superba dana , 1986 .

[20]  Nanoplanktonic siliceous cysts from Antarctica are algae , 1986 .

[21]  S. Chisholm,et al.  FLOW CYTOMETRIC ANALYSIS OF SPERMATOGENESIS IN THE DIATOM THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) 1 , 1987 .

[22]  S. W. Jeffrey,et al.  ULTRASTRUCTURE AND PIGMENTS OF TWO STRAINS OF THE PICOPLANKTONIC ALGA PELAGOCOCCUS SUBVIRIDIS (CHRYSOPHYCEAE) 1 , 1987 .

[23]  B. C. Booth,et al.  PARMALES, A NEW ORDER OF MARINE CHRYSOPHYTES, WITH DESCRIPTIONS OF THREE NEW GENERA AND SEVEN NEW SPECIES 1,2 , 1987 .

[24]  R. Olson,et al.  Cell-cycle response to nutrient starvation in two phytoplankton species, Thalassiosira weissflogii and Hymenomonas carterae , 1987 .

[25]  S. Chisholm,et al.  FLOW CYTOMETRIC ANALYSIS OF SPERMATOGENESIS IN THE DIATOM THALASSIOSIRA WEISSFLOGII (BACILLARIOPHYCEAE) 1 , 1987 .

[26]  B. C. Booth,et al.  TRIPARMACEAE, A SUBSTITUTE NAME FOR A FAMILY IN THE ORDER PARMALES (CHRYSOPHYCEAE) , 1988 .

[27]  D. Cushing A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified , 1989 .

[28]  R. Gersonde,et al.  Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 1. Vegetative cells , 1990 .

[29]  M. Brzezinski,et al.  Silicon availability and cell-cycle progression in marine diatoms , 1990 .

[30]  R. Gersonde,et al.  Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea) Part 2: Resting spores, chrysophycean cysts, an endoskeletal dinoflagellate, and notes on the origin of diatoms , 1990 .

[31]  J. Urban,et al.  Nanoplankton Found in Fecal Pellets of Macrozooplankton in Coastal Newfoundland Waters , 1993 .

[32]  C. Kosman,et al.  Parmales (Chrysophyceae) from Mexican, Californian, Baltic, Arctic and Antarctic waters with the description of a new subspecies and several new forms , 1993 .

[33]  H. A. Thomsen,et al.  Autecology, life history and toxicology of the silicoflagellate Dictyocha speculum (Silicoflagellata, Dictyochophyceae) , 1993 .

[34]  D. M. Nelson,et al.  Production and dissolution of biogenic silica in the ocean: Revised global estimates, comparison with regional data and relationship to biogenic sedimentation , 1995 .

[35]  A. Taniguchi,et al.  Growth characteristics of Parmales (Chrysophyceae) observed in bag cultures , 1995 .

[36]  B. Leadbeater,et al.  Chrysophyte Algae: Biomineralization and scale production in the Chrysophyta , 1995 .

[37]  C. D. Sandgren,et al.  SILICEOUS SCALE PRODUCTION IN CHRYSOPHYTE AND SYNUROPHYTE ALGAE. I. EFFECTS OF SILICA‐LIMITED GROWTH ON CELL SILICA CONTENT, SCALE MORPHOLOGY, AND THE CONSTRUCTION OF THE SCALE LAYER OF SYNURA PETERSENII 1 , 1996 .

[38]  G. Hasle,et al.  Chapter 2 – Marine Diatoms , 1996 .

[39]  A. Coleman,et al.  The Internal Transcribed Spacer 2 Exhibits a Common Secondary Structure in Green Algae and Flowering Plants , 1997, Journal of Molecular Evolution.

[40]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[41]  B. Michot,et al.  Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. , 1999, Nucleic acids research.

[42]  David G. Mann,et al.  The species concept in diatoms , 1999 .

[43]  H. Claustre,et al.  BOLIDOMONAS: A NEW GENUS WITH TWO SPECIES BELONGING TO A NEW ALGAL CLASS, THE BOLIDOPHYCEAE (HETEROKONTA) , 1999 .

[44]  H. Claustre,et al.  Diversity and Abundance of Bolidophyceae (Heterokonta) in Two Oceanic Regions , 1999, Applied and Environmental Microbiology.

[45]  P. McKay,et al.  Flow cytometric analysis. , 2000, Methods in molecular medicine.

[46]  Mark Hildebrand,et al.  SILICON METABOLISM IN DIATOMS: IMPLICATIONS FOR GROWTH  , 2000 .

[47]  A. W. Coleman,et al.  The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. , 2000, Protist.

[48]  L. Guillou,et al.  Phylogenetic analyses of Bolidophyceae (Heterokontophyta) using rbcL gene sequences support their sister group relationship to diatoms , 2001 .

[49]  M. Brzezinski,et al.  A novel fluorescent silica tracer for biological silicification studies. , 2001, Chemistry & biology.

[50]  D. Vaulot,et al.  DIEL PATTERNS OF GROWTH AND DIVISION IN MARINE PICOPLANKTON IN CULTURE , 2001 .

[51]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[52]  D. Vaulot,et al.  Application of fluorescent in situ hybridization coupled with tyramide signal amplification (FISH-TSA) to assess eukaryotic picoplankton composition , 2002 .

[53]  G. Brugerolle,et al.  The rhizoplast of chrysomonads, a basal body–nucleus connector that polarises the dividing spindle , 2003, Protoplasma.

[54]  E. Bravo-Sierra,et al.  PARMALES (CHRYSOPHYCEAE) FROM THE GULF OF TEHUANTEPEC, MEXICO, INCLUDING THE DESCRIPTION OF A NEW SPECIES, TETRAPARMA INSECTA SP. NOV., AND A PROPOSAL TO THE TAXONOMY OF THE GROUP 1 , 2003 .

[55]  T. Cavalier-smith,et al.  Phylogeny and Megasystematics of Phagotrophic Heterokonts (Kingdom Chromista) , 2006, Journal of Molecular Evolution.

[56]  B. Volcani,et al.  Role of silicon in diatom metabolism , 1977, Archives of Microbiology.

[57]  M. D. Hatch,et al.  Primary partitioning and storage of photosynthate in sucrose and starch in leaves of C4 plants , 1995, Planta.

[58]  Y. Nojiri,et al.  Microplankton assemblages at Station KNOT in the subarctic western Pacific, 1999–2000 , 2005 .

[59]  D. R. Markey,et al.  The ultrastructure of reproduction in the brown algaPylaiella littoralis , 2005, Protoplasma.

[60]  P. Tréguer,et al.  Growth physiology and fate of diatoms in the ocean: a review , 2005 .

[61]  J. Pickett-Heaps,et al.  Cell division in the pennate diatomDiatoma vulgare , 2005, Protoplasma.

[62]  J. Pickett-Heaps,et al.  Cell division in diatoms , 1984, Protoplasma.

[63]  H. R. Preisig Siliceous structures and silicification in flagellated protists , 1994, Protoplasma.

[64]  Tobias Müller,et al.  4SALE – A tool for synchronous RNA sequence and secondary structure alignment and editing , 2006, BMC Bioinformatics.

[65]  S. Konno,et al.  An amended terminology for the Parmales (Chrysophyceae) , 2007 .

[66]  Annette W. Coleman,et al.  Pan-eukaryote ITS2 homologies revealed by RNA secondary structure , 2007, Nucleic acids research.

[67]  Lukas H. Meyer,et al.  Summary for policymakers , 2007 .

[68]  Thomas Dandekar,et al.  Distinguishing species. , 2007, RNA.

[69]  D. Vaulot,et al.  The diversity of small eukaryotic phytoplankton (< or =3 microm) in marine ecosystems. , 2008, FEMS microbiology reviews.

[70]  H. Saito,et al.  Grazing impact of the copepod community in the Oyashio region of the western subarctic Pacific Ocean , 2008 .

[71]  P. Nick,et al.  Microtubules and the Evolution of Mitosis , 2008 .

[72]  Thomas Dandekar,et al.  Synchronous visual analysis and editing of RNA sequence and secondary structure alignments using 4SALE , 2008, BMC Research Notes.

[73]  Thomas Dandekar,et al.  5.8S-28S rRNA interaction and HMM-based ITS2 annotation. , 2009, Gene.

[74]  S. Ito,et al.  Transport of subarctic large copepods from the Oyashio area to the mixed water region by the coastal Oyashio intrusion , 2009 .

[75]  L. Hoffmann,et al.  Mitosis, cytokinesis and multinuclearity in a Xanthonema (Xanthophyta) isolated from Antarctica , 2009 .

[76]  K. Jakobsen,et al.  Seven gene phylogeny of heterokonts. , 2009, Protist.

[77]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[78]  A. Amato,et al.  Mitosis in diatoms: rediscovering an old model for cell division , 2009, BioEssays : news and reviews in molecular, cellular and developmental biology.

[79]  H. Hashimoto,et al.  Unusual nuclear division in Nannochloropsis oculata (Eustigmatophyceae, Heterokonta) which may ensure faithful transmission of secondary plastids. , 2009, Protist.

[80]  A. Coleman Is there a molecular key to the level of "biological species" in eukaryotes? A DNA guide. , 2009, Molecular phylogenetics and evolution.

[81]  B. Green,et al.  Complex repeat structures and novel features in the mitochondrial genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana. , 2011, Gene.

[82]  M. Melkonian,et al.  A close-up view on ITS2 evolution and speciation - a case study in the Ulvophyceae (Chlorophyta, Viridiplantae) , 2011, BMC Evolutionary Biology.

[83]  L. Medlin,et al.  A Review of the Evolution of the Diatoms from the Origin of the Lineage to Their Populations , 2011 .

[84]  S. Yoshikawa,et al.  ISOLATION AND CHARACTERIZATION OF PARMALES (HETEROKONTA/HETEROKONTOPHYTA/STRAMENOPILES) FROM THE OYASHIO REGION, WESTERN NORTH PACIFIC 1 , 2011, Journal of phycology.

[85]  N. Yoshie,et al.  Population dynamics of phytoplankton, heterotrophic bacteria, and viruses during the spring bloom in the western subarctic Pacific , 2011 .

[86]  E. Carmack,et al.  Arctic Ocean Microbial Community Structure before and after the 2007 Record Sea Ice Minimum , 2011, PloS one.

[87]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[88]  E. Yang,et al.  Supermatrix data highlight the phylogenetic relationships of photosynthetic stramenopiles. , 2012, Protist.

[89]  C. Gobler,et al.  Ecosystem disruptive algal blooms of the brown tide species, Aureococcus anophagefferens and Aureoumbra lagunensis , 2012 .

[90]  D. Vaulot,et al.  Diversity and Ecology of Eukaryotic Marine Phytoplankton , 2012 .

[91]  D. Mann,et al.  Gametogenesis and Auxospore Development in Actinocyclus (Bacillariophyta) , 2012, PloS one.

[92]  C. Lovejoy,et al.  Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates , 2013 .

[93]  Stéphane Audic,et al.  The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy , 2012, Nucleic Acids Res..

[94]  Sara Thomas,et al.  Photophysiology of Bolidomonas pacifica , 2013 .

[95]  I. Peeken,et al.  Protist distribution in the Western Fram Strait in summer 2010 based on 454‐pyrosequencing of 18S rDNA , 2013, Journal of phycology.

[96]  M. Melkonian,et al.  A consensus secondary structure of ITS2 in the chlorophyta identified by phylogenetic reconstruction. , 2013, Protist.

[97]  Pieter Vanormelingen,et al.  An Inordinate Fondness? The Number, Distributions, and Origins of Diatom Species , 2013, The Journal of eukaryotic microbiology.

[98]  S. Frickenhaus,et al.  Protist community composition in the Pacific sector of the Southern Ocean during austral summer 2010 , 2014, Polar Biology.

[99]  A. Kuwata,et al.  Growth characteristics and vertical distribution of Triparma laevis (Parmales) during summer in the Oyashio region, western North Pacific , 2013 .

[100]  S. Yoshikawa,et al.  Effects of Silicon-Limitation on Growth and Morphology of Triparma laevis NIES-2565 (Parmales, Heterokontophyta) , 2014, PloS one.

[101]  C. Lovejoy,et al.  Oceanographic structure drives the assembly processes of microbial eukaryotic communities , 2014, The ISME Journal.

[102]  Rachelle M. Jensen,et al.  The ocean sampling day consortium , 2015, GigaScience.

[103]  A. Kuwata,et al.  Seasonal variation in abundance and species composition of the Parmales community in the Oyashio region, western North Pacific , 2015 .

[104]  Christian Hamm,et al.  Evolution of Lightweight Structures , 2015, Biologically-Inspired Systems.

[105]  W. Luo,et al.  Molecular diversity of microbial eukaryotes in sea water from Fildes Peninsula, King George Island, Antarctica , 2015, Polar Biology.

[106]  J. Schultz,et al.  ITS2 Database V: Twice as Much. , 2015, Molecular biology and evolution.

[107]  J. Schmutz,et al.  Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? , 2015, Scientific Reports.

[108]  A. Knoll,et al.  Protistan Skeletons: A Geologic History of Evolution and Constraint , 2015 .

[109]  S. Yoshikawa,et al.  Mitotic spindle formation in Triparma laevis NIES-2565(Parmales, Heterokontophyta) , 2016, Protoplasma.

[110]  E. Buitenhuis,et al.  The Physiological Response of Picophytoplankton to Temperature and Its Model Representation , 2016, Front. Mar. Sci..

[111]  D. Vaulot,et al.  Diversity and oceanic distribution of the Parmales (Bolidophyceae), a picoplanktonic group closely related to diatoms , 2016, The ISME Journal.

[112]  Ben Nichols,et al.  Distributed under Creative Commons Cc-by 4.0 Vsearch: a Versatile Open Source Tool for Metagenomics , 2022 .

[113]  K. Kurokawa,et al.  Sequencing and analysis of the complete organellar genomes of Parmales, a closely related group to Bacillariophyta (diatoms) , 2016, Current Genetics.

[114]  Z. Finkel Silicification in the Microalgae , 2016 .

[115]  D. Richter,et al.  The Evolution of Silicon Transport in Eukaryotes , 2016, Molecular biology and evolution.

[116]  S. Yoshikawa,et al.  Ultrastructural analysis of siliceous cell wall regeneration in the stramenopile Triparma laevis (Parmales, Bolidophyceae) , 2016 .

[117]  D. Moreira,et al.  A Phylogenomic Framework to Study the Diversity and Evolution of Stramenopiles (=Heterokonts). , 2016, Molecular biology and evolution.

[118]  E. Nöthig,et al.  Biogeography and Photosynthetic Biomass of Arctic Marine Pico-Eukaroytes during Summer of the Record Sea Ice Minimum 2012 , 2016, PloS one.

[119]  R. Jordan,et al.  Tropical Parmales (Bolidophyceae) assemblages from the Sulu Sea and South China Sea, including the description of five new taxa , 2017 .

[120]  Bangqin Huang,et al.  Spatial and seasonal distributions of photosynthetic picoeukaryotes along an estuary to basin transect in the northern South China Sea , 2017 .

[121]  M. Kawachi,et al.  Seasonal and geographical distribution of near‐surface small photosynthetic eukaryotes in the western North Pacific determined by pyrosequencing of 18S rDNA , 2017, FEMS microbiology ecology.

[122]  최재락 Sexuality , 1996, Writing Intersectional Identities.