Iterative computation of second‐order derivatives of eigenvalues and eigenvectors

An iterative method is introduced for computing second-order partial derivatives (sensitivities) of eigenvalues and eigenvectors of matrices which depend on a number of real design parameters. Numerical tests confirm the viability of the method and support our theoretical analysis. Alternative methods are reviewed briefly and compared with the one proposed here.

[1]  J. Brandon Second-Order Design Sensitivities to Assess the Applicability of Sensitivity Analysis , 1991 .

[2]  P. Mantegazza,et al.  Calculation of Eigenvalue and Eigenvector Derivatives for Algebraic Flutter and Divergence Eigenproblems , 1979 .

[3]  A. Andrew Iterative Computation of Derivatives of Eigenvalues and Eigenvectors , 1979 .

[4]  Roger C. E. Tan,et al.  Computing derivatives of eigensystems by the topological e-algorithm , 1987 .

[5]  Roger C. E. Tan,et al.  Computing Derivatives of Eigenvalues and Elgenvectors by Simultaneous Iteration , 1989 .

[6]  Roger C. E. Tan,et al.  Computing Derivatives of Eigensystems by the Vector ε-Algorithm , 1987 .

[7]  A. Andrew Convergence of an Iterative Method for Derivatives of Eigensystems , 1978 .

[8]  Roger C. E. Tan,et al.  Some acceleration methods for iterative computer of derivatives of eigenvalues and eigenvectors , 1989 .

[9]  Raphael T. Haftka,et al.  Derivatives of eigenvalues and eigenvectors of a general complex matrix , 1988 .

[10]  Richard B. Nelson,et al.  Simplified calculation of eigenvector derivatives , 1976 .

[11]  T. Ting,et al.  A subspace iteration for eigenvector derivatives , 1992 .

[12]  K. Chu,et al.  On multiple eigenvalues of matrices depending on several parameters , 1990 .

[13]  Yee-Yeen Chu,et al.  Numerical methods for evaluating the derivatives of eigenvalues and eigenvectors , 1975 .

[14]  Peter Lancaster,et al.  Sensitivities of eigenvalues and eigenvectors of problems nonlinear in the eigenparameter , 1992 .

[15]  K. E. Chu,et al.  Derivatives of Eigenvalues and Eigenvectors of Matrix Functions , 1993, SIAM J. Matrix Anal. Appl..

[16]  W. C. Mills-Curran,et al.  CALCULATION OF EIGENVECTOR DERIVATIVES FOR STRUCTURES WITH REPEATED EIGENVALUES , 1988 .