The Richness of Distributional Cues to Word Boundaries in Speech to Young Children

This study is a systematic analysis of the information content of a wide range of distributional cues to word boundaries, individually and in combination, in naturally occurring child-directed speech across three languages (English, Polish, and Turkish). The paper presents a series of statistical analyses examining the relative predictive strength of these cues, the overlap in the information about word boundaries they contain, and the variability in their relative strengths and interactions across the languages. We find that the information content of individual distributional cues is not constant across languages, with relative reliability of cues varying across languages and with individual cues providing much less information in Polish and Turkish than in English. However, we also find that when these cues are combined, the cumulative information content of a diverse array of distributional cues provides a significant source of information about word boundaries across all three languages.

[1]  Jessica F. Hay,et al.  Learning in reverse: Eight-month-old infants track backward transitional probabilities , 2009, Cognition.

[2]  Edmund Gussmann,et al.  Resyllabification and deliking: the case of Polish voicing , 1992 .

[3]  P. Boersma How we learn variation, optionality and probalility , 1997 .

[4]  Eleanor Olds Batchelder,et al.  Bootstrapping the lexicon: A computational model of infant speech segmentation , 2002, Cognition.

[5]  Jeffrey L. Elman,et al.  Finding Structure in Time , 1990, Cogn. Sci..

[6]  Alex B. Fine,et al.  Language comprehension is sensitive to changes in the reliability of lexical cues , 2011, CogSci.

[7]  Kemal Oflazer,et al.  The architecture and the implementation of a finite state pronunciation lexicon for Turkish , 2006, Comput. Speech Lang..

[8]  R. Jacobs,et al.  Perception of speech reflects optimal use of probabilistic speech cues , 2008, Cognition.

[9]  Laurence White,et al.  Integration of multiple speech segmentation cues: a hierarchical framework. , 2005, Journal of experimental psychology. General.

[10]  Anand Venkataraman,et al.  A Statistical Model for Word Discovery in Transcribed Speech , 2001, CL.

[11]  P. Jusczyk,et al.  Phonotactic and Prosodic Effects on Word Segmentation in Infants , 1999, Cognitive Psychology.

[12]  Bob McMurray,et al.  Cue Integration With Categories: Weighting Acoustic Cues in Speech Using Unsupervised Learning and Distributional Statistics , 2010, Cogn. Sci..

[13]  P. Jusczyk,et al.  Phonotactic cues for segmentation of fluent speech by infants , 2001, Cognition.

[14]  Erik D. Thiessen,et al.  When cues collide: use of stress and statistical cues to word boundaries by 7- to 9-month-old infants. , 2003, Developmental psychology.

[15]  Dan Jurafsky,et al.  Effects of disfluencies, predictability, and utterance position on word form variation in English conversation. , 2003, The Journal of the Acoustical Society of America.

[16]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[17]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[18]  Mark Johnson,et al.  Improving nonparameteric Bayesian inference: experiments on unsupervised word segmentation with adaptor grammars , 2009, NAACL.

[19]  Eric Wanner,et al.  Language acquisition: the state of the art , 1982 .

[20]  Jeffrey Heinz,et al.  Improving Word Segmentation by Simultaneously Learning Phonotactics , 2008, CoNLL.

[21]  Sven L Mattys,et al.  Stress versus coarticulation: toward an integrated approach to explicit speech segmentation. , 2004, Journal of experimental psychology. Human perception and performance.

[22]  Elizabeth K. Johnson,et al.  Word Segmentation by 8-Month-Olds: When Speech Cues Count More Than Statistics , 2001 .

[23]  Michael C. Frank,et al.  Modeling human performance in statistical word segmentation , 2010, Cognition.

[24]  Margaret M. Fleck Lexicalized Phonotactic Word Segmentation , 2008, ACL.

[25]  Arnaud Rey,et al.  Lexical and Sublexical Units in Speech Perception , 2009, Cogn. Sci..

[26]  R. H. Baayen,et al.  The CELEX Lexical Database (CD-ROM) , 1996 .

[27]  Richard N. Aslin,et al.  Cue Integration in Categorical Tasks: Insights from Audio-Visual Speech Perception , 2011, PloS one.

[28]  Bruce Hayes,et al.  A Maximum Entropy Model of Phonotactics and Phonotactic Learning , 2008, Linguistic Inquiry.

[29]  Michael C. Frank,et al.  Beyond Transitional Probabilities: Human Learners Impose a Parsimony Bias in Statistical Word Segmentation , 2010 .

[30]  D. Norris,et al.  Shortlist B: a Bayesian model of continuous speech recognition. , 2008, Psychological review.

[31]  Aris Xanthos,et al.  Combining Utterance-Boundary and Predictability Approaches to Speech Segmentation , 2004 .

[32]  Daniel Swingley,et al.  Conditional Probability and Word Discovery: A Corpus Analysis of Speech to Infants , 2020, Proceedings of the Twenty First Annual Conference of the Cognitive Science Society.

[33]  C. Anton Rytting,et al.  Segmenting words from natural speech: subsegmental variation in segmental cues. , 2010, Journal of child language.

[34]  Stephen A. Hockema,et al.  Finding Words in Speech: An Investigation of American English , 2006 .

[35]  R N Aslin,et al.  Statistical Learning by 8-Month-Old Infants , 1996, Science.

[36]  Joe Pater,et al.  Weighted Constraints in Generative Linguistics , 2009, Cogn. Sci..

[37]  Richard N. Aslin,et al.  Models of Word Segmentation in Fluent Maternal Speech to Infants , 2014 .

[38]  B. Hayes,et al.  Stochastic phonological knowledge: the case of Hungarian vowel harmony , 2006, Phonology.

[39]  C Snow,et al.  Child language data exchange system , 1984, Journal of Child Language.

[40]  T. Griffiths,et al.  A Bayesian framework for word segmentation: Exploring the effects of context , 2009, Cognition.

[41]  Charles D. Yang Universal Grammar, statistics or both? , 2004, Trends in Cognitive Sciences.

[42]  Joe Pater,et al.  Weighted constraints and gradient restrictions on place co-occurrence in Muna and Arabic , 2008 .

[43]  Morten H. Christiansen,et al.  Integrating Multiple Cues in Word Segmentation: A Connectionist Model using Hints , 1996 .

[44]  G. Clements Vowel and Consonant Disharmony in Turkish , 1982 .

[45]  Erik D. Thiessen,et al.  Spectral tilt as a cue to word segmentation in infancy and adulthood , 2004, Perception & psychophysics.

[46]  T. A. Cartwright,et al.  Distributional regularity and phonotactic constraints are useful for segmentation , 1996, Cognition.

[47]  P. Jusczyk,et al.  Infants’ sensitivity to allophonic cues for word segmentation , 1999, Perception & psychophysics.

[48]  E. Newport,et al.  Learning at a distance I. Statistical learning of non-adjacent dependencies , 2004, Cognitive Psychology.

[49]  Mary R. Newsome,et al.  The Beginnings of Word Segmentation in English-Learning Infants , 1999, Cognitive Psychology.

[50]  T. Florian Jaeger,et al.  A Bayesian Belief Updating Model of Phonetic Recalibration and Selective Adaptation , 2011, CMCL@ACL.

[51]  Geert Booij,et al.  A grid theory of stress in Polish , 1985 .

[52]  Jeffrey Heinz,et al.  Modeling the contribution of phonotactic cues to the problem of word segmentation. , 2010, Journal of child language.

[53]  Robert M. Gonyea,et al.  Learning at a Distance : , 2009 .

[54]  Pierre Perruchet,et al.  A role for backward transitional probabilities in word segmentation? , 2008, Memory & cognition.

[55]  Robert Daland,et al.  Learning Diphone-Based Segmentation , 2011, Cogn. Sci..

[56]  R. Weist,et al.  The defective tense hypothesis: on the emergence of tense and aspect in child Polish , 1984, Journal of Child Language.

[57]  N. Chater,et al.  Bootstrapping Word Boundaries: A Bottom-up Corpus-Based Approach to Speech Segmentation , 1997, Cognitive Psychology.

[58]  Jessica F. Hay,et al.  Statistical learning in a natural language by 8-month-old infants. , 2009, Child development.

[59]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[60]  Charles Yang,et al.  Word Segmentation: Quick but not Dirty , 2005 .

[61]  E. Newport,et al.  WORD SEGMENTATION : THE ROLE OF DISTRIBUTIONAL CUES , 1996 .

[62]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[63]  Morten H. Christiansen,et al.  The secret is in the sound: from unsegmented speech to lexical categories. , 2009, Developmental science.

[64]  Mark Johnson,et al.  Using Adaptor Grammars to Identify Synergies in the Unsupervised Acquisition of Linguistic Structure , 2008, ACL.

[65]  Aaron D. Mitchel,et al.  Colliding cues in word segmentation: The role of cue strength and general cognitive processes , 2010 .

[66]  Mark Johnson,et al.  Unsupervised Word Segmentation for Sesotho Using Adaptor Grammars , 2008, SIGMORPHON.

[67]  J R Saffran,et al.  Emerging integration of sequential and suprasegmental information in preverbal speech segmentation. , 1995, Child development.

[68]  Daniel Swingley,et al.  Statistical clustering and the contents of the infant vocabulary , 2005, Cognitive Psychology.

[69]  R. Kager,et al.  Adding Generalization to Statistical Learning: The Induction of Phonotactics from Continuous Speech. , 2010 .

[70]  A. Woodward,et al.  Infants' sensitivity to word boundaries in fluent speech , 1996, Journal of Child Language.

[71]  Dan Klein,et al.  Online EM for Unsupervised Models , 2009, NAACL.

[72]  P. Smolensky,et al.  Optimality Theory: Constraint Interaction in Generative Grammar , 2004 .

[73]  Morten H. Christiansen,et al.  Words in puddles of sound: modelling psycholinguistic effects in speech segmentation. , 2010, Journal of child language.

[74]  Thomas L. Griffiths,et al.  Learning phonetic categories by learning a lexicon , 2009 .

[75]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[76]  Michael R. Brent,et al.  An Efficient, Probabilistically Sound Algorithm for Segmentation and Word Discovery , 1999, Machine Learning.

[77]  Morten H. Christiansen,et al.  Learning to Segment Speech Using Multiple Cues: A Connectionist Model , 1998 .

[78]  R. Jacobs What determines visual cue reliability? , 2002, Trends in Cognitive Sciences.