Solid-immersion imaging interferometric nanoscopy to the limits of available frequency space.
暂无分享,去创建一个
[1] M. Gross,et al. Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography. , 2001, Optics letters.
[2] Steven R. J. Brueck,et al. Imaging interferometric microscopy , 2002, CLEO 2002.
[3] Colin J. R. Sheppard,et al. Resolution for off-axis illumination , 1998 .
[4] G. Toraldo di Francia. Degrees of freedom of an image. , 1969, Journal of the Optical Society of America.
[5] Daniel L Marks,et al. Interferometric Synthetic Aperture Microscopy , 2007, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.
[6] Zhaowei Liu,et al. Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.
[7] Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .
[8] Emmett N. Leith,et al. Superresolution by incoherent-to-coherent conversion , 1987 .
[9] V. Lauer. New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope , 2002, Journal of microscopy.
[10] Anne Sentenac,et al. Beyond the Rayleigh criterion: grating assisted far-field optical diffraction tomography. , 2006, Physical review letters.
[11] E. Abbe. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .
[12] S. Hell. Far-Field Optical Nanoscopy , 2007, Science.
[13] Zeev Zalevsky,et al. Superresolution with nonorthogonal polarization coding. , 2005, Applied optics.
[14] Oleg Pustovyy,et al. Resolution of 90 nm (λ/5) in an optical transmission microscope with an annular condenser , 2006 .
[15] D. Sampson,et al. Synthetic aperture fourier holographic optical microscopy. , 2006, Physical review letters.
[16] S. Brueck,et al. Structured illumination for the extension of imaging interferometric microscopy. , 2008, Optics express.
[17] Zeev Zalevsky,et al. Superresolution optical system by common-path interferometry. , 2006, Optics express.
[18] A. W. Lohmann,et al. Superresolution for Nonbirefringent Objects , 1964 .
[19] David D. Sampson,et al. Spatial information transmission beyond a system's diffraction limit using optical spectral encoding of the spatial frequency , 2008 .
[20] Steven R. J. Brueck,et al. Demonstration of imaging interferometric microscopy (IIM) , 2003, SPIE Advanced Lithography.
[21] F. H. Köklü,et al. Subsurface microscopy of integrated circuits with angular spectrum and polarization control. , 2009, Optics letters.
[22] D. Sampson,et al. Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy. , 2005, Optics express.
[23] J. H. Massig,et al. Digital off-axis holography with a synthetic aperture. , 2002, Optics letters.
[24] Zeev Zalevsky,et al. Synthetic aperture superresolution with multiple off-axis holograms. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.
[25] S. Brueck,et al. Optical resolution below λ/4 using synthetic aperture microscopy and evanescent-wave illumination , 2008 .
[26] Daniel L Marks,et al. Real-time interferometric synthetic aperture microscopy. , 2008, Optics express.
[27] Zeev Zalevsky,et al. Superresolution imaging method using phase-shifting digital lensless Fourier holography. , 2009, Optics express.
[28] V. Micó,et al. Axial superresolution by synthetic aperture generation , 2008 .
[29] S. Brueck,et al. Imaging Interferometric Microscopy , 2008, 2005 Pacific Rim Conference on Lasers & Electro-Optics.
[30] Hugues Giovannini,et al. Experimental demonstration of quantitative imaging beyond Abbe's limit with optical diffraction tomography. , 2009, Physical review letters.
[31] Zeev Zalevsky,et al. Optical super resolution , 2003 .
[32] Zeev Zalevsky,et al. Superresolved imaging in digital holography by superposition of tilted wavefronts. , 2006, Applied optics.
[33] E N Leith,et al. Small-aperture, high-resolution, two-channel imaging system. , 1990, Optics letters.
[34] M. FranÇon. Contribution à l’amélioration du pouvoir séparateur , 1952 .
[35] S. Brueck,et al. Imaging interferometric microscopy-approaching the linear systems limits of optical resolution. , 2007, Optics express.
[36] Zeev Zalevsky,et al. Single-step superresolution by interferometric imaging. , 2004, Optics express.
[37] G. D. Francia. Resolving Power and Information , 1955 .
[38] Colin J. R. Sheppard,et al. Information capacity and resolution in an optical system , 1986 .
[39] E N Leith,et al. Superresolution by spatial-temporal encoding methods. , 1992, Applied optics.
[40] W. Lukosz. Optical Systems with Resolving Powers Exceeding the Classical Limit , 1966 .
[41] D Mendlovic,et al. Superresolving optical system with time multiplexing and computer decoding. , 1999, Applied optics.
[42] Optical Systems with Enhanced Resolving Power , 1960 .
[43] Zeev Zalevsky,et al. IV Optical systems with improved resolving power , 2000 .
[44] D. Sampson,et al. Digital Fourier Holography Enables Wide-Field, Superresolved, Microscopic Characterization , 2007 .
[45] Zeev Zalevsky,et al. Superresolution digital holographic microscopy for three-dimensional samples. , 2008, Optics express.
[46] Zubin Jacob,et al. Optical hyperlens: far-field imaging beyond the diffraction limit , 2006, SPIE NanoScience + Engineering.
[47] V. Micó,et al. Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution , 2008 .
[48] Stephen A. Boppart,et al. Interferometric Synthetic Aperture Microscopy , 2007, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.