Solid-immersion imaging interferometric nanoscopy to the limits of available frequency space.

Imaging interferometric nanoscopy (IIN) is a synthetic aperture approach offering the potential of optical resolution to the linear-system limit of optics (~λ/4n). The immersion advantages of IIN can be realized if the object is in close proximity to a solid-immersion medium with illumination and collection through the substrate and coupling this radiation to air by a grating on the medium surface opposite the object. The spatial resolution as a function of the medium thickness and refractive index as well as the field-of-view of the objective optical system is derived and applied to simulations.

[1]  M. Gross,et al.  Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography. , 2001, Optics letters.

[2]  Steven R. J. Brueck,et al.  Imaging interferometric microscopy , 2002, CLEO 2002.

[3]  Colin J. R. Sheppard,et al.  Resolution for off-axis illumination , 1998 .

[4]  G. Toraldo di Francia Degrees of freedom of an image. , 1969, Journal of the Optical Society of America.

[5]  Daniel L Marks,et al.  Interferometric Synthetic Aperture Microscopy , 2007, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[6]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[7]  Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[8]  Emmett N. Leith,et al.  Superresolution by incoherent-to-coherent conversion , 1987 .

[9]  V. Lauer New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope , 2002, Journal of microscopy.

[10]  Anne Sentenac,et al.  Beyond the Rayleigh criterion: grating assisted far-field optical diffraction tomography. , 2006, Physical review letters.

[11]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[12]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[13]  Zeev Zalevsky,et al.  Superresolution with nonorthogonal polarization coding. , 2005, Applied optics.

[14]  Oleg Pustovyy,et al.  Resolution of 90 nm (λ/5) in an optical transmission microscope with an annular condenser , 2006 .

[15]  D. Sampson,et al.  Synthetic aperture fourier holographic optical microscopy. , 2006, Physical review letters.

[16]  S. Brueck,et al.  Structured illumination for the extension of imaging interferometric microscopy. , 2008, Optics express.

[17]  Zeev Zalevsky,et al.  Superresolution optical system by common-path interferometry. , 2006, Optics express.

[18]  A. W. Lohmann,et al.  Superresolution for Nonbirefringent Objects , 1964 .

[19]  David D. Sampson,et al.  Spatial information transmission beyond a system's diffraction limit using optical spectral encoding of the spatial frequency , 2008 .

[20]  Steven R. J. Brueck,et al.  Demonstration of imaging interferometric microscopy (IIM) , 2003, SPIE Advanced Lithography.

[21]  F. H. Köklü,et al.  Subsurface microscopy of integrated circuits with angular spectrum and polarization control. , 2009, Optics letters.

[22]  D. Sampson,et al.  Microscopic particle discrimination using spatially-resolved Fourier-holographic light scattering angular spectroscopy. , 2005, Optics express.

[23]  J. H. Massig,et al.  Digital off-axis holography with a synthetic aperture. , 2002, Optics letters.

[24]  Zeev Zalevsky,et al.  Synthetic aperture superresolution with multiple off-axis holograms. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  S. Brueck,et al.  Optical resolution below λ/4 using synthetic aperture microscopy and evanescent-wave illumination , 2008 .

[26]  Daniel L Marks,et al.  Real-time interferometric synthetic aperture microscopy. , 2008, Optics express.

[27]  Zeev Zalevsky,et al.  Superresolution imaging method using phase-shifting digital lensless Fourier holography. , 2009, Optics express.

[28]  V. Micó,et al.  Axial superresolution by synthetic aperture generation , 2008 .

[29]  S. Brueck,et al.  Imaging Interferometric Microscopy , 2008, 2005 Pacific Rim Conference on Lasers & Electro-Optics.

[30]  Hugues Giovannini,et al.  Experimental demonstration of quantitative imaging beyond Abbe's limit with optical diffraction tomography. , 2009, Physical review letters.

[31]  Zeev Zalevsky,et al.  Optical super resolution , 2003 .

[32]  Zeev Zalevsky,et al.  Superresolved imaging in digital holography by superposition of tilted wavefronts. , 2006, Applied optics.

[33]  E N Leith,et al.  Small-aperture, high-resolution, two-channel imaging system. , 1990, Optics letters.

[34]  M. FranÇon Contribution à l’amélioration du pouvoir séparateur , 1952 .

[35]  S. Brueck,et al.  Imaging interferometric microscopy-approaching the linear systems limits of optical resolution. , 2007, Optics express.

[36]  Zeev Zalevsky,et al.  Single-step superresolution by interferometric imaging. , 2004, Optics express.

[37]  G. D. Francia Resolving Power and Information , 1955 .

[38]  Colin J. R. Sheppard,et al.  Information capacity and resolution in an optical system , 1986 .

[39]  E N Leith,et al.  Superresolution by spatial-temporal encoding methods. , 1992, Applied optics.

[40]  W. Lukosz Optical Systems with Resolving Powers Exceeding the Classical Limit , 1966 .

[41]  D Mendlovic,et al.  Superresolving optical system with time multiplexing and computer decoding. , 1999, Applied optics.

[42]  Optical Systems with Enhanced Resolving Power , 1960 .

[43]  Zeev Zalevsky,et al.  IV Optical systems with improved resolving power , 2000 .

[44]  D. Sampson,et al.  Digital Fourier Holography Enables Wide-Field, Superresolved, Microscopic Characterization , 2007 .

[45]  Zeev Zalevsky,et al.  Superresolution digital holographic microscopy for three-dimensional samples. , 2008, Optics express.

[46]  Zubin Jacob,et al.  Optical hyperlens: far-field imaging beyond the diffraction limit , 2006, SPIE NanoScience + Engineering.

[47]  V. Micó,et al.  Common-path phase-shifting digital holographic microscopy: A way to quantitative phase imaging and superresolution , 2008 .

[48]  Stephen A. Boppart,et al.  Interferometric Synthetic Aperture Microscopy , 2007, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.