Automatic Learning of Textual Entailments with Cross-Pair Similarities

In this paper we define a novel similarity measure between examples of textual entailments and we use it as a kernel function in Support Vector Machines (SVMs). This allows us to automatically learn the rewrite rules that describe a non trivial set of entailment cases. The experiments with the data sets of the RTE 2005 challenge show an improvement of 4.4% over the state-of-the-art methods.

[1]  Gennaro Chierchia,et al.  Meaning and grammar (2nd ed.): an introduction to semantics , 2000 .

[2]  Ido Dagan,et al.  Web Based Probabilistic Textual Entailment , 2005 .

[4]  Steven Abney,et al.  Part-of-Speech Tagging and Partial Parsing , 1997 .

[5]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[6]  L. Ferro,et al.  MITRE ’ s Submissions to the EU Pascal RTE Challenge , 2005 .

[7]  Rada Mihalcea,et al.  Measuring the Semantic Similarity of Texts , 2005, EMSEE@ACL.

[8]  Johan Bos,et al.  Recognising Textual Entailment with Logical Inference , 2005, HLT.

[9]  Lauri Karttunen,et al.  Local Textual Inference: Can it be Defined or Circumscribed? , 2005, EMSEE@ACL.

[10]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[11]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[12]  Bernard Haasdonk,et al.  Feature space interpretation of SVMs with indefinite kernels , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[14]  Ted Pedersen,et al.  WordNet::Similarity - Measuring the Relatedness of Concepts , 2004, NAACL.

[15]  Dan Roth,et al.  An Inference Model for Semantic Entailment in Natural Language , 2005, IJCAI.

[16]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[17]  Bernardo Magnini,et al.  Tree edit distance for textual entailment , 2007 .

[18]  Jean-Philippe Tarel,et al.  Non-Mercer Kernels for SVM Object Recognition , 2004, BMVC.

[19]  Michael Collins,et al.  New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron , 2002, ACL.

[20]  Ido Dagan,et al.  PROBABILISTIC TEXTUAL ENTAILMENT: GENERIC APPLIED MODELING OF LANGUAGE VARIABILITY , 2004 .

[21]  Alessandro Moschitti,et al.  Making Tree Kernels Practical for Natural Language Learning , 2006, EACL.

[22]  John A. Carroll,et al.  Applied morphological processing of English , 2001, Natural Language Engineering.

[23]  Gennaro Chierchia,et al.  Meaning and Grammar: An Introduction to Semantics , 1990 .

[24]  Marti A. Hearst Automatic Acquisition of Hyponyms from Large Text Corpora , 1992, COLING.