Pyrolysis and combustion kinetics of lycopodium particles in thermogravimetric analysis

[1]  Farzad F. Dizaji,et al.  Micro-organic dust combustion considering particles thermal resistance , 2015 .

[2]  M. Bidabadi,et al.  A parametric study of lycopodium dust flame , 2015 .

[3]  Farzad F. Dizaji,et al.  An analytical model for pyrolysis of a single biomass particle , 2015 .

[4]  Mehdi Bidabadi,et al.  Investigation of effective dimensionless numbers on initiation of instability in combustion of moisty organic dust , 2014 .

[5]  Farzad F. Dizaji,et al.  An Analytical Model for Flame Propagation through Moist Lycopodium Particles with Non-unity Lewis Number , 2014 .

[6]  Mehdi Bidabadi,et al.  Lycopodium Dust Flame Characteristics Considering Char Yield , 2013 .

[7]  Pietro Bartocci,et al.  Thermogravimetric analysis and kinetic study of poplar wood pyrolysis , 2012 .

[8]  M. Bidabadi,et al.  Thermophoresis effect on volatile particle concentration in micro-organic dust flame , 2012 .

[9]  Kin Keung Lai,et al.  Global economic activity and crude oil prices: A cointegration analysis , 2010 .

[10]  M. Bidabadi,et al.  The effect of Lewis and Damköhler numbers on the flame propagation through micro-organic dust particles , 2010 .

[11]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[12]  Mehdi Bidabadi,et al.  Novel analytical model for predicting the combustion characteristics of premixed flame propagation in lycopodium dust particles , 2009 .

[13]  M. Bidabadi,et al.  Modeling combustion of lycopodium particles by considering the temperature difference between the gas and the particles , 2009 .

[14]  Na-na Wang,et al.  Bio-oil production from cotton stalk , 2008 .

[15]  M. Hanna,et al.  Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock , 2008 .

[16]  Qunwu Huang,et al.  Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis , 2006 .

[17]  A. Pütün,et al.  Fixed-bed pyrolysis of cotton stalk for liquid and solid products , 2005 .

[18]  Panagiotis Grammelis,et al.  Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite , 2003 .

[19]  J. Tascón,et al.  Composition of gases released during olive stones pyrolysis , 2002 .

[20]  A. Demirbas,et al.  Biomass resource facilities and biomass conversion processing for fuels and chemicals , 2001 .

[21]  S. Vyazovkin,et al.  Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data , 1999 .

[22]  Atul Sharma,et al.  Pyrolysis rates of biomass materials , 1998 .

[23]  Joseph H. Flynn,et al.  The ‘Temperature Integral’ — Its use and abuse , 1997 .

[24]  C. D. Doyle Series Approximations to the Equation of Thermogravimetric Data , 1965, Nature.

[25]  D. Adhikari,et al.  Biomass-based energy fuel through biochemical routes: A review , 2009 .

[26]  M. Becidan,et al.  Products distribution and gas release in pyrolysis of thermally thick biomass residues samples , 2007 .

[27]  A. Demirbas,et al.  Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues , 2005 .