Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments

Low loss Bulk Acoustic Wave devices are considered from the point of view of the solid state approach as phonon-confining cavities. We demonstrate effective design of such acoustic cavities with phonon-trapping techniques exhibiting extremely high quality factors for trapped longitudinally-polarized phonons of various wavelengths. Quality factors of observed modes exceed 1 billion, with a maximum Q-factor of 8 billion and Q × f product of 1.6 · 1018 at liquid helium temperatures. Such high sensitivities allow analysis of intrinsic material losses in resonant phonon systems. Various mechanisms of phonon losses are discussed and estimated.

[1]  K. Nishiguchi,et al.  Phonon-cavity electromechanics , 2012, Nature Physics.

[2]  Joel J. Martin Aluminum‐related acoustic loss in AT‐cut quartz crystals , 1984 .

[3]  Raymond D. Mindlin,et al.  An Introduction to the Mathematical Theory of Vibrations of Elastic Plates , 2006 .

[4]  M. Imboden,et al.  Evidence of universality in the dynamical response of micromechanical diamond resonators at millikelvin temperatures , 2008, 0803.1669.

[5]  Michael R. Vanner,et al.  Phonon-tunnelling dissipation in mechanical resonators , 2010, Nature communications.

[6]  W. P. Mason Effect of Impurities and Phonon Processes on the Ultrasonic Attenuation of Germanium, Crystal Quartz, and Silicon , 1965 .

[7]  Humphrey J. Maris,et al.  Interaction of Sound Waves with Thermal Phonons in Dielectric Crystals , 1971 .

[8]  R. Besson A New "Electrodeless" Resonator Design , 1977 .

[9]  R. N. Brown,et al.  Radiation Effects in Synthetic Quartz: The Role of Electrodiffusion and Radiation-Induced Mobility of Interstitial Ions , 1979, IEEE Transactions on Nuclear Science.

[10]  Dissipation due to two-level systems in nano-mechanical devices , 2006, cond-mat/0611153.

[11]  H. Deresiewicz,et al.  Plane Waves in a Thermoelastic Solid , 1957 .

[12]  R. Ruskov,et al.  On-chip quantum phonodynamics , 2012 .

[13]  J. Imbaud,et al.  Losses in high quality quartz crystal resonators at cryogenic temperatures , 2011 .

[14]  R. Pohl,et al.  Thermal Conductivity and Specific Heat of Noncrystalline Solids , 1971 .

[15]  H Jiang,et al.  Intrinsic energy loss mechanisms in a cantilevered carbon nanotube beam oscillator. , 2004, Physical review letters.

[16]  G. Steele,et al.  Carbon nanotubes as ultrahigh quality factor mechanical resonators. , 2009, Nano letters.

[17]  Volume Su IEEE Standard on Piezoelectricity , 1984 .

[18]  Kerry Vahala,et al.  Cavity opto-mechanics. , 2007, Optics express.

[19]  H. F. Tiersten,et al.  An analysis of doubly rotated quartz resonators utilizing essentially thickness modes with transverse variation , 1986 .

[20]  Y. Park,et al.  Micromechanical resonators fabricated from lattice-matched and etch-selective GaAs∕InGaP∕GaAs heterostructures , 2007 .

[21]  M. Tobar,et al.  Extremely low-loss acoustic phonons in a quartz bulk acoustic wave resonator at millikelvin temperature , 2012, 1202.4556.

[22]  E. P. EerNisse,et al.  Quartz Resonator Frequency Shifts Arising from Electrode Stress , 1975 .

[23]  R. L. Badzey,et al.  Quantum friction in nanomechanical oscillators at millikelvin temperatures , 2005, cond-mat/0603691.

[24]  T. W. Smith,et al.  Thermal expansion, Gruneisen functions and static lattice properties of quartz , 1982 .

[25]  Michael R. Vanner,et al.  Probing Planck-scale physics with quantum optics , 2011, Nature Physics.

[26]  P. Klemens Effect of Thermal and Phonon Processes on Ultrasonic Attenuation , 1965 .