Insights into the homo-oligomerization properties of N-terminal coiled-coil domain of Ebola virus VP35 protein.

[1]  G. Lenzi,et al.  p21 Restricts HIV-1 in Monocyte-Derived Dendritic Cells through the Reduction of Deoxynucleoside Triphosphate Biosynthesis and Regulation of SAMHD1 Antiviral Activity , 2017, Journal of Virology.

[2]  G. Gao,et al.  Crystal Structure of the Marburg Virus Nucleoprotein Core Domain Chaperoned by a VP35 Peptide Reveals a Conserved Drug Target for Filovirus , 2017, Journal of Virology.

[3]  S. Gianni,et al.  How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication , 2017, Cellular and Molecular Life Sciences.

[4]  A. Marzi,et al.  Ebola and Marburg virus vaccines , 2017, Virus Genes.

[5]  Anne M Johnson,et al.  The Ebola outbreak, 2013–2016: old lessons for new epidemics , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[6]  Ju-Guang Han,et al.  Exploration micromechanism of VP35 IID interaction and recognition dsRNA: A molecular dynamics simulation , 2017, Proteins.

[7]  Valerie Le Sage,et al.  Ebola virus VP35 blocks stress granule assembly. , 2017, Virology.

[8]  Shuwen Liu,et al.  The Drug Targets and Antiviral Molecules for Treatment of Ebola Virus Infection. , 2016, Current topics in medicinal chemistry.

[9]  G. Bricogne,et al.  Crystal Structure of the Marburg Virus VP35 Oligomerization Domain , 2016, Journal of Virology.

[10]  G. Oakley,et al.  In silico and in vitro methods to identify ebola virus VP35-dsRNA inhibitors. , 2016, Bioorganic & medicinal chemistry.

[11]  P. Varadwaj,et al.  Flavonoids as multi-target inhibitors for proteins associated with Ebola virus: in-silico discovery using virtual screening and molecular docking studies , 2016, Interdisciplinary Sciences: Computational Life Sciences.

[12]  C. Montesano,et al.  Genetic diversity in Ebola virus: Phylogenetic and in silico structural studies of Ebola viral proteins. , 2016, Asian Pacific journal of tropical medicine.

[13]  C. Basler,et al.  Filovirus pathogenesis and immune evasion: insights from Ebola virus and Marburg virus , 2015, Nature Reviews Microbiology.

[14]  E. Tramontano,et al.  A Luciferase Reporter Gene Assay to Measure Ebola Virus Viral Protein 35-Associated Inhibition of Double-Stranded RNA-Stimulated, Retinoic Acid-Inducible Gene 1-Mediated Induction of Interferon β. , 2015, The Journal of infectious diseases.

[15]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[16]  S. Pieraccini,et al.  In silico study of VP35 inhibitors: from computational alanine scanning to essential dynamics. , 2015, Molecular bioSystems.

[17]  Dafna M. Abelson,et al.  Assembly of the Ebola Virus Nucleoprotein from a Chaperoned VP35 Complex. , 2015, Cell reports.

[18]  W. Chiu,et al.  An Intrinsically Disordered Peptide from Ebola Virus VP35 Controls Viral RNA Synthesis by Modulating Nucleoprotein-RNA Interactions. , 2015, Cell reports.

[19]  P. Luthra,et al.  Ebola Virus VP35 Interaction with Dynein LC8 Regulates Viral RNA Synthesis , 2015, Journal of Virology.

[20]  A. Cavalli,et al.  Insights into the coiled-coil organization of the Hendra virus phosphoprotein from combined biochemical and SAXS studies. , 2015, Virology.

[21]  J. Erales,et al.  Coiled-coil deformations in crystal structures: the measles virus phosphoprotein multimerization domain as an illustrative example. , 2014, Acta crystallographica. Section D, Biological crystallography.

[22]  Wei Xu,et al.  In silico derived small molecules bind the filovirus VP35 protein and inhibit its polymerase cofactor activity. , 2014, Journal of molecular biology.

[23]  J. Erales,et al.  Biochemical and structural studies of the oligomerization domain of the Nipah virus phosphoprotein: evidence for an elongated coiled-coil homotrimer. , 2013, Virology.

[24]  E. Saphire,et al.  Crystal Structure of the Nipah Virus Phosphoprotein Tetramerization Domain , 2013, Journal of Virology.

[25]  E. Tramontano,et al.  Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: Hide, mask, hit , 2013, Antiviral Research.

[26]  H. Ebihara,et al.  Mutual antagonism between the Ebola virus VP35 protein and the RIG-I activator PACT determines infection outcome. , 2013, Cell host & microbe.

[27]  Daniel W. A. Buchan,et al.  Scalable web services for the PSIPRED Protein Analysis Workbench , 2013, Nucleic Acids Res..

[28]  P. Prevelige,et al.  Structural and Functional Characterization of the Mumps Virus Phosphoprotein , 2013, Journal of Virology.

[29]  M. Blackledge,et al.  Structure of the Tetramerization Domain of Measles Virus Phosphoprotein , 2013, Journal of Virology.

[30]  W F Drew Bennett,et al.  Improved Parameters for the Martini Coarse-Grained Protein Force Field. , 2013, Journal of chemical theory and computation.

[31]  I. MacRae,et al.  Marburg Virus VP35 Can Both Fully Coat the Backbone and Cap the Ends of dsRNA for Interferon Antagonism , 2012, PLoS pathogens.

[32]  Thomas L. Madden,et al.  Domain enhanced lookup time accelerated BLAST , 2012, Biology Direct.

[33]  J. Briggs,et al.  Structural dissection of Ebola virus and its assembly determinants using cryo-electron tomography , 2012, Proceedings of the National Academy of Sciences.

[34]  Yali Zhu,et al.  Characterization of the RNA Silencing Suppression Activity of the Ebola Virus VP35 Protein in Plants and Mammalian Cells , 2012, Journal of Virology.

[35]  Timothy F. Booth,et al.  The Organisation of Ebola Virus Reveals a Capacity for Extensive, Modular Polyploidy , 2012, PloS one.

[36]  Joshua C. Johnson,et al.  DRBP76 associates with Ebola virus VP35 and suppresses viral polymerase function. , 2011, The Journal of infectious diseases.

[37]  D. Pala,et al.  dsRNA binding characterization of full length recombinant wild type and mutants Zaire ebolavirus VP35 , 2011, Antiviral Research.

[38]  H. Feldmann,et al.  Ebola haemorrhagic fever , 2011, The Lancet.

[39]  N. Sullivan,et al.  Ebolavirus Proteins Suppress the Effects of Small Interfering RNA by Direct Interaction with the Mammalian RNA Interference Pathway , 2011, Journal of Virology.

[40]  M. Steinmetz,et al.  Molecular basis of coiled-coil oligomerization-state specificity , 2010, Proceedings of the National Academy of Sciences.

[41]  Jens H. Kuhn,et al.  Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations , 2010, Archives of Virology.

[42]  Martin Madera,et al.  The Evolution and Structure Prediction of Coiled Coils across All Genomes , 2022 .

[43]  C. Basler,et al.  Structural and functional characterization of Reston Ebola virus VP35 interferon inhibitory domain. , 2010, Journal of molecular biology.

[44]  Z. Otwinowski,et al.  Crystallization and preliminary X-ray analysis of Ebola VP35 interferon inhibitory domain mutant proteins. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[45]  B. Prabhakar,et al.  The VP35 protein of Ebola virus impairs dendritic cell maturation induced by virus and lipopolysaccharide. , 2010, The Journal of general virology.

[46]  Z. Otwinowski,et al.  Structural basis for dsRNA recognition and interferon antagonism by Ebola VP35 , 2010, Nature Structural &Molecular Biology.

[47]  Virgil L. Woods,et al.  Ebolavirus VP35 uses a bimodal strategy to bind dsRNA for innate immune suppression , 2009, Proceedings of the National Academy of Sciences.

[48]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[49]  D. Piano,et al.  Purification and functional characterization of the full length recombinant Ebola virus VP35 protein expressed in E. coli. , 2009, Protein expression and purification.

[50]  E. Mühlberger,et al.  Ebola Virus VP35 Antagonizes PKR Activity through Its C-Terminal Interferon Inhibitory Domain , 2009, Journal of Virology.

[51]  Steven B. Bradfute,et al.  Ebola Zaire Virus Blocks Type I Interferon Production by Exploiting the Host SUMO Modification Machinery , 2009, PLoS pathogens.

[52]  Steven J M Jones,et al.  Ebolavirus VP35 Interacts with the Cytoplasmic Dynein Light Chain 8 , 2009, Journal of Virology.

[53]  C. Basler,et al.  Ebola Virus Protein VP35 Impairs the Function of Interferon Regulatory Factor-Activating Kinases IKKε and TBK-1 , 2009, Journal of Virology.

[54]  J. Nix,et al.  Structure of the Ebola VP35 interferon inhibitory domain , 2009, Proceedings of the National Academy of Sciences.

[55]  I. Taylor,et al.  Structural properties of the human respiratory syncytial virus P protein: Evidence for an elongated homotetrameric molecule that is the smallest orthologue within the family of paramyxovirus polymerase cofactors , 2008, Proteins.

[56]  A. Keating,et al.  Structural specificity in coiled-coil interactions. , 2008, Current opinion in structural biology.

[57]  S. Zaki,et al.  Inhibition of IRF-3 Activation by VP35 Is Critical for the High Level of Virulence of Ebola Virus , 2008, Journal of Virology.

[58]  B. Berkhout,et al.  The Ebola Virus VP35 Protein Is a Suppressor of RNA Silencing , 2007, PLoS pathogens.

[59]  Manfred J. Sippl,et al.  Thirty years of environmental health research--and growing. , 1996, Nucleic Acids Res..

[60]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[61]  A. Sali,et al.  Statistical potential for assessment and prediction of protein structures , 2006, Protein science : a publication of the Protein Society.

[62]  Zongdi Feng,et al.  The VP35 Protein of Ebola Virus Inhibits the Antiviral Effect Mediated by Double-Stranded RNA-Dependent Protein Kinase PKR , 2006, Journal of Virology.

[63]  S. Nichol,et al.  Reverse Genetic Generation of Recombinant Zaire Ebola Viruses Containing Disrupted IRF-3 Inhibitory Domains Results in Attenuated Virus Growth In Vitro and Higher Levels of IRF-3 Activation without Inhibiting Viral Transcription or Replication , 2006, Journal of Virology.

[64]  Erica Ollmann Saphire,et al.  Ebola Virus VP35 Protein Binds Double-Stranded RNA and Inhibits Alpha/Beta Interferon Production Induced by RIG-I Signaling , 2006, Journal of Virology.

[65]  R. N. Harty,et al.  Ebola Virus VP35-VP40 Interaction Is Sufficient for Packaging 3E-5E Minigenome RNA into Virus-Like Particles , 2006, Journal of Virology.

[66]  H. Klenk,et al.  Homo-Oligomerization of Marburgvirus VP35 Is Essential for Its Function in Replication and Transcription , 2005, Journal of Virology.

[67]  C. Basler,et al.  Homo-oligomerization facilitates the interferon-antagonist activity of the ebolavirus VP35 protein. , 2005, Virology.

[68]  E. Mühlberger,et al.  A reconstituted replication and transcription system for Ebola virus Reston and comparison with Ebola virus Zaire. , 2005, Virology.

[69]  S. Nichol,et al.  A C-terminal basic amino acid motif of Zaire ebolavirus VP35 is essential for type I interferon antagonism and displays high identity with the RNA-binding domain of another interferon antagonist, the NS1 protein of influenza A virus. , 2004, Virology.

[70]  A. Rahaman,et al.  Phosphoprotein of the Rinderpest Virus Forms a Tetramer through a Coiled Coil Region Important for Biological Function , 2004, Journal of Biological Chemistry.

[71]  H. Klenk,et al.  The Ebola Virus VP35 Protein Inhibits Activation of Interferon Regulatory Factor 3 , 2003, Journal of Virology.

[72]  G. Nabel,et al.  The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein. , 2002, Molecular cell.

[73]  B. Rost,et al.  Comparing function and structure between entire proteomes , 2001, Protein science : a publication of the Protein Society.

[74]  J Walshaw,et al.  Socket: a program for identifying and analysing coiled-coil motifs within protein structures. , 2001, Journal of molecular biology.

[75]  V. Volchkov,et al.  The Ebola virus VP35 protein functions as a type I IFN antagonist. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[76]  R. Ruigrok,et al.  Tetrameric coiled coil domain of Sendai virus phosphoprotein , 2000, Nature Structural Biology.

[77]  R. Ruigrok,et al.  On the domain structure and the polymerization state of the sendai virus P protein. , 2000, Virology.

[78]  Stephan Becker,et al.  Comparison of the Transcription and Replication Strategies of Marburg Virus and Ebola Virus by Using Artificial Replication Systems , 1999, Journal of Virology.

[79]  H. Klenk,et al.  Three of the Four Nucleocapsid Proteins of Marburg Virus, NP, VP35, and L, Are Sufficient To Mediate Replication and Transcription of Marburg Virus-Specific Monocistronic Minigenomes , 1998, Journal of Virology.

[80]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[81]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[82]  T. Yeates,et al.  Verification of protein structures: Patterns of nonbonded atomic interactions , 1993, Protein science : a publication of the Protein Society.

[83]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[84]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[85]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[86]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[87]  Thomas L. Vincent,et al.  LOGICOIL - multi-state prediction of coiled-coil oligomeric state , 2013, Bioinform..

[88]  Sonia Longhi,et al.  Structural analysis of the human respiratory syncytial virus phosphoprotein: characterization of an alpha-helical domain involved in oligomerization. , 2006, The Journal of general virology.

[89]  D. Woolfson The design of coiled-coil structures and assemblies. , 2005, Advances in protein chemistry.

[90]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[91]  D. Eisenberg,et al.  VERIFY3D: assessment of protein models with three-dimensional profiles. , 1997, Methods in enzymology.