Effect Algebras as Presheaves on Finite Boolean Algebras

For an effect algebra A, we examine the category of all morphisms from finite Boolean algebras into A. This category can be described as a category of elements of a presheaf R(A) on the category of finite Boolean algebras. We prove that some properties (being an orthoalgebra, the Riesz decomposition property, being a Boolean algebra) of an effect algebra A can be characterized in terms of some properties of the category of elements of the presheaf R(A). We prove that the tensor product of effect algebras arises as a left Kan extension of the free product of finite Boolean algebras along the inclusion functor. The tensor product of effect algebras can be expressed by means of the Day convolution of presheaves on finite Boolean algebras.

[1]  Günther Ludwig Foundations of quantum mechanics , 1983 .

[2]  S. Lane Categories for the Working Mathematician , 1971 .

[3]  A. Dvurecenskij Tensor product of difference posets , 1995 .

[4]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[5]  Roberto Giuntini,et al.  Toward a formal language for unsharp properties , 1989 .

[6]  D. Foulis,et al.  Tensor products of orthoalgebras , 1993 .

[7]  I. Moerdijk,et al.  Sheaves in geometry and logic: a first introduction to topos theory , 1992 .

[8]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[9]  K. Goodearl Partially ordered abelian groups with interpolation , 1986 .

[10]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[11]  Ladislav Beran,et al.  Orthomodular Lattices: Algebraic Approach , 1985 .

[12]  Gejza Jenca Effect Algebras are the Eilenberg-Moore Category for the Kalmbach Monad , 2015, Order.

[13]  Sylvia Pulmannová,et al.  Quotients of partial abelian monoids , 1997 .

[14]  D. Mundici Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .

[15]  David J. Foulis,et al.  Interval and Scale Effect Algebras , 1997 .

[16]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[17]  B. Day On closed categories of functors , 1970 .

[18]  Sam Staton,et al.  Effect Algebras, Presheaves, Non-locality and Contextuality , 2015, ICALP.

[19]  J M Myers The Quantum Theory of Measurement (2nd edn) , 1997 .

[20]  Sylvia Pulmannová,et al.  Orthomodular structures as quantum logics , 1991 .

[21]  David J. Foulis,et al.  Filters and supports in orthoalgebras , 1992 .

[22]  Bart Jacobs,et al.  Coreflections in Algebraic Quantum Logic , 2012 .