Radiation tolerance of two-dimensional material-based devices for space applications

Tobias Vogl, ∗ Ruvi Lecamwasam, Ben C. Buchler, Yuerui Lu, and Ping Koy Lam † Centre for Quantum Computation and Communication Technology, Department of Quantum Science, Research School of Physics and Engineering, The Australian National University, Acton ACT 2601, Australia Centre for Quantum Computation and Communication Technology, Research School of Electrical, Energy and Materials Engineering, The Australian National University, Acton ACT 2601, Australia (Dated: March 22, 2019)

[1]  S.Johnson,et al.  Microcavity enhanced single photon emission from two-dimensional WSe2 , 2018, 1807.02778.

[2]  C. Robert,et al.  Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, magneto-optics, and charge tuning , 2016, 1602.07947.

[3]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[4]  Kenji Watanabe,et al.  Quantum Emission from Defects in Single Crystal Hexagonal Boron Nitride , 2016, 1603.02305.

[5]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[6]  Ming-Cheng Chen,et al.  Single quantum emitters in monolayer semiconductors. , 2015, Nature nanotechnology.

[7]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[8]  T. T. Tran,et al.  Engineering and Localization of Quantum Emitters in Large Hexagonal Boron Nitride Layers. , 2016, ACS applied materials & interfaces.

[9]  C. Schneider,et al.  Integration of atomically thin layers of transition metal dichalcogenides into high-Q, monolithic Bragg-cavities: an experimental platform for the enhancement of the optical interaction in 2D-materials , 2018, Optical Materials Express.

[10]  A. Kis,et al.  Optically active quantum dots in monolayer WSe2. , 2014, Nature nanotechnology.

[11]  M. Plenio,et al.  Color Centers in Hexagonal Boron Nitride Monolayers: A Group Theory and Ab Initio Analysis , 2017, 1709.05414.

[12]  Robert Schneider,et al.  Single-photon emission from localized excitons in an atomically thin semiconductor , 2015 .

[13]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[14]  Ryan Beams,et al.  Voltage-controlled quantum light from an atomically thin semiconductor. , 2015, Nature nanotechnology.

[15]  D. Englund,et al.  Solid-state single-photon emitters , 2016, Nature Photonics.

[16]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[17]  Z. Yuan,et al.  Quantum key distribution over 122 km of standard telecom fiber , 2004, quant-ph/0412171.

[18]  C. Schneider,et al.  Deterministic coupling of quantum emitters in WSe2 monolayers to plasmonic nanocavities. , 2018, Optics express.

[19]  P. Lam,et al.  Radiation tolerance of two-dimensional material-based devices for space applications , 2018, Nature Communications.

[20]  M. Ford,et al.  Robust Solid-State Quantum System Operating at 800 K , 2016, CLEO 2017.

[21]  P. Senellart,et al.  High-performance semiconductor quantum-dot single-photon sources. , 2017, Nature nanotechnology.

[22]  Shuo Sun,et al.  Quantum dot single-photon sources with ultra-low multi-photon probability , 2018, npj Quantum Information.

[23]  K. Vahala Optical microcavities , 2003, Nature.

[24]  Jason M. Smith,et al.  Femtoliter tunable optical cavity arrays. , 2010, Optics letters.

[25]  Sellami Ali,et al.  DECOY STATE QUANTUM KEY DISTRIBUTION , 2010 .

[26]  C. Stampfl,et al.  First-principles investigation of quantum emission from hBN defects. , 2017, Nanoscale.

[27]  D. Hunger,et al.  Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond , 2013, 1304.0948.

[28]  Igor Aharonovich,et al.  Deterministic Coupling of Quantum Emitters in 2D Materials to Plasmonic Nanocavity Arrays. , 2017, Nano letters.

[29]  Igor Aharonovich,et al.  Robust multicolor single photon emission from point defects in hexagonal boron nitride , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[30]  A. Trichet,et al.  Topographic control of open-access microcavities at the nanometer scale. , 2015, Optics express.

[31]  R. Blatt,et al.  Deterministic single-photon source from a single ion , 2009, 0905.2885.

[32]  M. Atatüre,et al.  Atomically thin quantum light-emitting diodes , 2016, Nature Communications.

[33]  Federico Paolucci,et al.  Structural Attributes and Photodynamics of Visible Spectrum Quantum Emitters in Hexagonal Boron Nitride. , 2016, Nano letters.

[34]  J. Hone,et al.  Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities , 2018, Nature Nanotechnology.

[35]  T. Ohshima,et al.  Effects of High-Energy Electron Irradiation on Quantum Emitters in Hexagonal Boron Nitride. , 2018, ACS applied materials & interfaces.

[36]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[37]  Kenji Watanabe,et al.  Atomistic defect states as quantum emitters in monolayer MoS$_2$ , 2019, 1901.01042.

[38]  P. Valvin,et al.  Hexagonal boron nitride is an indirect bandgap semiconductor , 2015, Nature Photonics.

[39]  P. Lam,et al.  Room temperature single photon source using fiber-integrated hexagonal boron nitride , 2017 .

[40]  V. Zwiller,et al.  On-demand generation of background-free single photons from a solid-state source , 2017, 1712.06937.

[41]  P. Senellart,et al.  Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters. , 2015, Physical review letters.

[42]  Igor Aharonovich,et al.  Quantum emission from hexagonal boron nitride monolayers , 2015, 2016 Conference on Lasers and Electro-Optics (CLEO).

[43]  Johannes E. Fröch,et al.  Photonic crystal cavities from hexagonal boron nitride , 2018, Nature Communications.

[44]  P. Mallet,et al.  Single photon emitters in exfoliated WSe2 structures. , 2015, Nature nanotechnology.

[45]  Xiuling Li,et al.  Single photon emission from plasma treated 2D hexagonal boron nitride. , 2017, Nanoscale.

[46]  Vinod M. Menon,et al.  Near-deterministic activation of room-temperature quantum emitters in hexagonal boron nitride , 2017, Optica.

[47]  P. Grangier,et al.  Nonclassical radiation from diamond nanocrystals , 2001, OFC 2001.

[48]  S. Takeuchi,et al.  Coupling Quantum Emitters in 2D Materials with Tapered Fibers , 2017, 1701.02696.

[49]  O. Stéphan,et al.  Bright UV Single Photon Emission at Point Defects in h-BN. , 2016, Nano letters.

[50]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[51]  Tobias Vogl,et al.  Fabrication and Deterministic Transfer of High-Quality Quantum Emitters in Hexagonal Boron Nitride , 2017, 1711.10246.

[52]  C. Schneider,et al.  Room-temperature Tamm-plasmon exciton-polaritons with a WSe2 monolayer , 2016, Nature Communications.

[53]  C. Becher,et al.  Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide. , 2016, Optics express.