Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia.

Over the past 20 years, a large number of genes involved in the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) has been identified by molecular characterization of recurrent chromosomal aberrations and more subtle genetic defects. When reviewing the current list of oncogenes and tumor suppressor genes, it becomes clear that these can be grouped into four classes of mutations, which are involved in: (i) cell cycle deregulation; (ii) impaired differentiation; (iii) proliferation and survival advantage and (iv) unlimited self-renewal capacity. Based on recent studies of T-ALL, we can speculate that at least these four different mutations are required for the development of T-ALL. In this review we summarize our current insights into the molecular pathogenesis of T-ALL, and we discuss how these molecular findings provide new directions for future research and novel therapeutic strategies in T-ALL.

[1]  Peter Marynen,et al.  Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). , 2005, Blood.

[2]  Sandra A. Moore,et al.  Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. , 2005, Cancer cell.

[3]  Peter M Fischer,et al.  Recent progress in the discovery and development of cyclin-dependent kinase inhibitors , 2005, Expert opinion on investigational drugs.

[4]  Hiroshi Hirai,et al.  Recent advances in the development of selective small molecule inhibitors for cyclin-dependent kinases. , 2005, Current topics in medicinal chemistry.

[5]  Tannishtha Reya,et al.  Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance , 2005, Nature Immunology.

[6]  P. Marynen,et al.  A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias , 2005, Leukemia.

[7]  P. Marynen,et al.  e6-a2 BCR-ABL1 fusion in T-cell acute lymphoblastic leukemia , 2005, Leukemia.

[8]  J. Licht,et al.  Therapeutic intervention in leukemias that express the activated fms-like tyrosine kinase 3 (FLT3): opportunities and challenges , 2005, Current opinion in hematology.

[9]  J. Gotlib Farnesyltransferase inhibitor therapy in acute myelogenous leukemia. , 2005, Current hematology reports.

[10]  E. Macintyre,et al.  Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. , 2004, Blood.

[11]  Ping Chen,et al.  Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. , 2004, Journal of medicinal chemistry.

[12]  U. Kees,et al.  A microarray model system identifies potential new target genes of the proto‐oncogene HOX11 , 2004, Genes, chromosomes & cancer.

[13]  A. Ferrando,et al.  Various types of rearrangements target TLX3 locus in T‐cell acute lymphoblastic leukemia , 2004, Genes, chromosomes & cancer.

[14]  J. Aster,et al.  Notch Subunit Heterodimerization and Prevention of Ligand-Independent Proteolytic Activation Depend, Respectively, on a Novel Domain and the LNR Repeats , 2004, Molecular and Cellular Biology.

[15]  Arthur Weiss,et al.  Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation , 2004, Oncogene.

[16]  Andrew P. Weng,et al.  Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia , 2004, Science.

[17]  A. Ferrando,et al.  Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia , 2004, Nature Genetics.

[18]  D. Gilliland,et al.  Blasts from the past: new lessons in stem cell biology from chronic myelogenous leukemia. , 2004, Cancer cell.

[19]  L. Platanias,et al.  Inhibition of phosphatidylinositol 3'-kinase induces preferentially killing of PTEN-null T leukemias through AKT pathway. , 2004, Biochemical and biophysical research communications.

[20]  P. Zipfel,et al.  Requirement for Abl Kinases in T Cell Receptor Signaling , 2004, Current Biology.

[21]  A. Ferrando,et al.  Activating FLT3 mutations in CD117/KIT(+) T-cell acute lymphoblastic leukemias. , 2004, Blood.

[22]  J. O'neil,et al.  TAL1/SCL induces leukemia by inhibiting the transcriptional activity of E47/HEB. , 2004, Cancer cell.

[23]  Freddy Radtke,et al.  Notch regulation of lymphocyte development and function , 2004, Nature Immunology.

[24]  A. Ferrando,et al.  Biallelic transcriptional activation of oncogenic transcription factors in T-cell acute lymphoblastic leukemia. , 2004, Blood.

[25]  M. Caligiuri,et al.  Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia , 2004, The Lancet.

[26]  F. Schweisguth,et al.  Regulation of Notch Signaling Activity , 2004, Current Biology.

[27]  F. Speleman,et al.  Clinical significance of HOX11L2 expression linked to t(5;14)(q35;q32), of HOX11 expression, and of SIL-TAL fusion in childhood T-cell malignancies: results of EORTC studies 58881 and 58951. , 2004, Blood.

[28]  J. V. van Dongen,et al.  Two dual-color split signal fluorescence in situ hybridization assays to detect t(5;14) involving HOX11L2 or CSX in T-cell acute lymphoblastic leukemia. , 2004, Haematologica.

[29]  I. Weissman,et al.  Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. , 2003, Genes & development.

[30]  A. Ferrando,et al.  Gene expression profiling in T-cell acute lymphoblastic leukemia. , 2003, Seminars in hematology.

[31]  F. Speleman,et al.  t(5;14)/HOX11L2-positive T-cell acute lymphoblastic leukemia. A collaborative study of the Groupe Français de Cytogénétique Hématologique (GFCH) , 2003, Leukemia.

[32]  H. Drexler,et al.  The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). , 2003, Cancer research.

[33]  E. Macintyre,et al.  CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRγδ lineage , 2003 .

[34]  S. Armstrong,et al.  Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation. , 2003, Blood.

[35]  F. Weerkamp,et al.  Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development , 2003, Leukemia.

[36]  H. Cavé,et al.  CDKN2A, CDKN2B, and MTAP gene dosage permits precise characterization of mono‐ and bi‐allelic 9p21 deletions in childhood acute lymphoblastic leukemia , 2003, Genes, chromosomes & cancer.

[37]  M. Seminario,et al.  Lipid phosphatases in the regulation of T cell activation: living up to their PTEN‐tial , 2003, Immunological reviews.

[38]  D. Wechsler,et al.  A novel chromosomal inversion at 11q23 in infant acute myeloid leukemia fuses MLL to CALM, a gene that encodes a clathrin assembly protein , 2003, Genes, chromosomes & cancer.

[39]  E. Macintyre,et al.  CALM-AF10 is a common fusion transcript in T-ALL and is specific to the TCRgammadelta lineage. , 2003, Blood.

[40]  D. Gilliland,et al.  Genetics of myeloid leukemias. , 2003, Annual review of genomics and human genetics.

[41]  B. Owens,et al.  HOX and Non‐HOX Homeobox Genes in Leukemic Hematopoiesis , 2002, Stem cells.

[42]  J. Griffin,et al.  The roles of FLT3 in hematopoiesis and leukemia. , 2002, Blood.

[43]  J. Zucman‐Rossi,et al.  HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. , 2002, Blood.

[44]  F. McCormick,et al.  The RB and p53 pathways in cancer. , 2002, Cancer cell.

[45]  Alex Matter,et al.  Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug , 2002, Nature Reviews Drug Discovery.

[46]  H. Macdonald,et al.  Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta Lineage Thymocytes. , 2002, Immunity.

[47]  B. Verhasselt,et al.  HOX-A10 regulates hematopoietic lineage commitment: evidence for a monocyte-specific transcription factor. , 2002, Blood.

[48]  E. Lander,et al.  Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. , 2002, Cancer cell.

[49]  B. Schraven,et al.  Adapters in lymphocyte signaling. , 2002, The Journal of clinical investigation.

[50]  R. Heilig,et al.  A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia , 2001, Leukemia.

[51]  Charles J. Sherr,et al.  The INK4a/ARF network in tumour suppression , 2001, Nature Reviews Molecular Cell Biology.

[52]  S. Ward,et al.  Phosphoinositide 3-kinases in T lymphocyte activation. , 2001, Current opinion in immunology.

[53]  S. Latour,et al.  Proximal protein tyrosine kinases in immunoreceptor signaling. , 2001, Current opinion in immunology.

[54]  C. Buske,et al.  Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. , 2001, Blood.

[55]  P. Marynen,et al.  Molecular cytogenetic and clinical findings in ETV6/ABL1‐positive leukemia , 2001, Genes, chromosomes & cancer.

[56]  D. Gilliland Hematologic malignancies. , 2001, Current opinion in hematology.

[57]  U. Kees,et al.  Promoter demethylation accompanies reactivation of the HOX11 proto‐oncogene in leukemia , 2000, Genes, chromosomes & cancer.

[58]  J. Shuster,et al.  New recurring cytogenetic abnormalities and association of blast cell karyotypes with prognosis in childhood T-cell acute lymphoblastic leukemia: a pediatric oncology group report of 343 cases. , 2000, Blood.

[59]  O. Bernard,et al.  TEL-JAK2 transgenic mice develop T-cell leukemia. , 2000, Blood.

[60]  C. Buske,et al.  Homeobox genes in leukemogenesis. , 2000, International journal of hematology.

[61]  M. Diccianni,et al.  Ras activation in normal white blood cells and childhood acute lymphoblastic leukemia. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[62]  M. Diccianni,et al.  Universal inactivation of both p16 and p15 but not downstream components is an essential event in the pathogenesis of T-cell acute lymphoblastic leukemia. , 2000, Clinical cancer research : an official journal of the American Association for Cancer Research.

[63]  J. Sklar,et al.  Calcium Depletion Dissociates and Activates Heterodimeric Notch Receptors , 2000, Molecular and Cellular Biology.

[64]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[65]  C. Meijer,et al.  The role of Homeobox genes in normal hematopoiesis and hematological malignancies , 1999, Leukemia.

[66]  H. Macdonald,et al.  Deficient T cell fate specification in mice with an induced inactivation of Notch1. , 1999, Immunity.

[67]  Channing J Der,et al.  Increasing complexity of Ras signaling , 1998, Oncogene.

[68]  L. Chin,et al.  The INK4a/ARF tumor suppressor: one gene--two products--two pathways. , 1998, Trends in biochemical sciences.

[69]  H. Kaneko,et al.  Mutational analysis of the N-ras gene in acute lymphoblastic leukemia: a study of 125 Japanese pediatric cases. , 1998, International journal of hematology.

[70]  N. Heerema,et al.  Frequency and clinical significance of cytogenetic abnormalities in pediatric T-lineage acute lymphoblastic leukemia: a report from the Children's Cancer Group. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[71]  R Berger,et al.  A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. , 1997, Science.

[72]  K. Gross,et al.  An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T‐cell malignancies in transgenic mice , 1997, The EMBO journal.

[73]  N. Zhang,et al.  Transforming function of the HOX11/TCL3 homeobox gene. , 1997, Cancer research.

[74]  U. Thorsteinsdóttir,et al.  Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia , 1997, Molecular and cellular biology.

[75]  J. Rowley,et al.  The t(10;11)(p13;q14) in the U937 cell line results in the fusion of the AF10 gene and CALM, encoding a new member of the AP-3 clathrin assembly protein family. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[76]  M. Cleary,et al.  Helix-loop-helix proteins LYL1 and E2a form heterodimeric complexes with distinctive DNA-binding properties in hematolymphoid cells , 1996, Molecular and cellular biology.

[77]  S. Smith,et al.  Deletion or lack of expression of CDKN2 (CDK4I/MTS1/INK4A) and MTS2 (INK4B) in acute lymphoblastic leukemia cell lines reflects the phenotype of the uncultured primary leukemia cells. , 1996, Leukemia.

[78]  T. Rabbitts,et al.  Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. , 1996, The EMBO journal.

[79]  A. Levitzki,et al.  Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor , 1996, Nature.

[80]  J. Herman,et al.  Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4B. , 1996, Cancer research.

[81]  U. Kees,et al.  HOX11 expression in pediatric acute lymphoblastic leukemia is associated with T-cell phenotype. , 1995, Oncogene.

[82]  A. Hagemeijer,et al.  The t(10;11) translocation in acute myeloid leukemia (M5) consistently fuses the leucine zipper motif of AF10 onto the HRX gene. , 1995, Blood.

[83]  M. Sofroniew,et al.  The Hox11 gene is essential for cell survival during spleen development. , 1995, Development.

[84]  M. Amylon,et al.  Does activation of the TAL1 gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A pediatric oncology group study. , 1995, Blood.

[85]  J. Herman,et al.  5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers , 1995, Nature Medicine.

[86]  R. Hanada,et al.  Mutations of the p53 and ras genes in childhood t(1;19)-acute lymphoblastic leukemia. , 1995, Blood.

[87]  F. Sigaux,et al.  Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. , 1994, Blood.

[88]  A. Okamoto,et al.  Mutations and altered expression of p16INK4 in human cancer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[89]  I. Mérida,et al.  T cell receptor-associated alpha-phosphatidylinositol 3-kinase becomes activated by T cell receptor cross-linking and requires pp56lck. , 1994, The Journal of biological chemistry.

[90]  M. Cobb,et al.  Products of the TAL2 oncogene in leukemic T cells: bHLH phosphoproteins with DNA-binding activity. , 1994, Oncogene.

[91]  N. Kohl,et al.  Farnesyltransferase inhibitors: Ras research yields a potential cancer therapeutic , 1994, Cell.

[92]  S. Korsmeyer,et al.  Hox11 controls the genesis of the spleen , 1994, Nature.

[93]  B. Sefton,et al.  Oncogenic activation of the Lck protein accompanies translocation of the LCK gene in the human HSB2 T-cell leukemia , 1994, Molecular and cellular biology.

[94]  R. Kingston,et al.  Preferred sequences for DNA recognition by the TAL1 helix-loop-helix proteins , 1994, Molecular and cellular biology.

[95]  T. Hawley,et al.  The HOX11 homeobox-containing gene of human leukemia immortalizes murine hematopoietic precursors. , 1994, Oncogene.

[96]  R. Baer TAL1, TAL2 and LYL1: a family of basic helix-loop-helix proteins implicated in T cell acute leukaemia. , 1993, Seminars in cancer biology.

[97]  C. Largman,et al.  Homeobox Genes in Normal Hematopoiesis and Leukemia , 1992 .

[98]  R. Espinosa,et al.  TAL2, a helix-loop-helix gene activated by the (7;9)(q34;q32) translocation in human T-cell leukemia. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[99]  S. Kamel‐Reid,et al.  A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14) , 1991 .

[100]  T. Rabbitts,et al.  HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[101]  W. Ludwig,et al.  TTG-2, a new gene encoding a cysteine-rich protein with the LIM motif, is overexpressed in acute T-cell leukaemia with the t(11;14)(p13;q11). , 1991, Oncogene.

[102]  M. Lu,et al.  The tcl‐3 proto‐oncogene altered by chromosomal translocation in T‐cell leukemia codes for a homeobox protein. , 1991, The EMBO journal.

[103]  J. Sklar,et al.  Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia , 1991, The Journal of experimental medicine.

[104]  J. Sklar,et al.  TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms , 1991, Cell.

[105]  E. Boncinelli,et al.  Coordinate regulation of HOX genes in human hematopoietic cells. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[106]  S. Korsmeyer,et al.  Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. , 1991, Science.

[107]  H. Hsu,et al.  Enhancer-binding activity of the tal-1 oncoprotein in association with the E47/E12 helix-loop-helix proteins , 1991, Molecular and cellular biology.

[108]  M. Perutz,et al.  The rhombotin family of cysteine-rich LIM-domain oncogenes: distinct members are involved in T-cell translocations to human chromosomes 11p15 and 11p13. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[109]  J. Visvader,et al.  Differential expression of the LYL, SCL and E2A helix-loop-helix genes within the hemopoietic system. , 1991, Oncogene.

[110]  S. Raimondi,et al.  A novel human homeobox gene lies at the chromosome 10 breakpoint in lymphoid neoplasias with chromosomal translocation t(10;14). , 1991, Blood.

[111]  I. Kirsch,et al.  Disruption of the human SCL locus by "illegitimate" V-(D)-J recombinase activity. , 1990, Science.

[112]  M. Amylon,et al.  The t(1;14)(p34;q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: a Pediatric Oncology Group study. , 1990, Blood.

[113]  F. Mitelman,et al.  Bone marrow karyotypes in 94 children with acute leukemia , 1990, European journal of haematology.

[114]  F. McCormick,et al.  N-ras gene point mutations in childhood acute lymphocytic leukemia correlate with a poor prognosis. , 1990, Blood.

[115]  A. Carroll,et al.  The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix‐loop‐helix protein. , 1990, The EMBO journal.

[116]  R. Berger,et al.  Two distinct mechanisms for the SCL gene activation in the t(1;14) translocation of T‐cell leukemias , 1990, Genes, chromosomes & cancer.

[117]  T. Waldmann,et al.  The gene SCL is expressed during early hematopoiesis and encodes a differentiation-related DNA-binding motif. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[118]  J. L. Bos,et al.  ras oncogenes in human cancer: a review. , 1989, Cancer research.

[119]  Y. Jan,et al.  Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence , 1989, Cell.

[120]  R. Berger,et al.  Chromosomal rearrangement on chromosome 11q14-q21 in T cell acute lymphoblastic leukemia. , 1989, Leukemia.

[121]  M. Cleary,et al.  lyl-1, a novel gene altered by chromosomal translocation in T cell leukemia, codes for a protein with a helix-loop-helix DNA binding motif , 1989, Cell.

[122]  P. Nowell,et al.  Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[123]  S. Korsmeyer,et al.  The t(11;14)(p15;q11) in a T-cell acute lymphoblastic leukemia cell line activates multiple transcripts, including Ttg-1, a gene encoding a potential zinc finger protein , 1989, Molecular and cellular biology.

[124]  F. Behm,et al.  Cytogenetics of childhood T-cell leukemia , 1988 .

[125]  F. Sigaux,et al.  Cytogenetic studies on 519 consecutive de novo acute nonlymphocytic leukemias. , 1987, Cancer genetics and cytogenetics.

[126]  S. Sait,et al.  Recurrent involvement of 11q13 in acute nonlymphocytic leukemia. , 1987, Cancer genetics and cytogenetics.

[127]  A. Hagemeijer,et al.  bcr rearrangement and translocation of the c-abl oncogene in Philadelphia positive acute lymphoblastic leukemia. , 1986, Blood.

[128]  A. Palumbo,et al.  Gene for alpha-chain of human T-cell receptor: location on chromosome 14 region involved in T-cell neoplasms. , 1985, Science.

[129]  A. Look,et al.  New chromosomal translocations correlate with specific immunophenotypes of childhood acute lymphoblastic leukemia , 1984, Cell.

[130]  J. Stephenson,et al.  A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukaemia , 1982, Nature.

[131]  A. Okamoto,et al.  Mutations and altered expression of p 16 INK 4 in human cancer ( p 53 protein / tumor-suppressor gene / cyclin Di / retinoblastoma protein ) , 2022 .