Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time
暂无分享,去创建一个
[1] J. Lions. Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .
[2] E. Boschi. Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .
[3] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[4] H. Beckert,et al. J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .
[5] J. Simon. Compact sets in the spaceLp(O,T; B) , 1986 .
[6] D. Aronson. The porous medium equation , 1986 .
[7] J. Wloka,et al. Partial differential equations: Strongly elliptic differential operators and the method of variations , 1987 .
[8] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[9] L. Evans. Measure theory and fine properties of functions , 1992 .
[10] Joachim Weickert,et al. Anisotropic diffusion in image processing , 1996 .
[11] Shi Jin,et al. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..
[12] Timothy J. Williams,et al. A Numerical Simulation of Groundwater Flow and Contaminant Transport on the CRAY T3D and C90 Supercomputers , 1999, Int. J. High Perform. Comput. Appl..
[13] W. Park,et al. Plasma simulation studies using multilevel physics models , 1999 .
[14] C. Beaulieu,et al. The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.
[15] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[16] B. Berkowitz. Characterizing flow and transport in fractured geological media: A review , 2002 .
[17] Derek K. Jones,et al. Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .
[18] Jacques Simeon,et al. Compact Sets in the Space L~(O, , 2005 .
[19] J. Vázquez. The Porous Medium Equation: Mathematical Theory , 2006 .
[20] Binheng Song,et al. Solutions of the anisotropic porous medium equation in Rn under an L1-initial value☆ , 2006 .
[21] Sibylle Günter,et al. Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas , 2007, J. Comput. Phys..
[22] Patrick Tamain. Etude des flux de matière dans le plasma de bord des tokamaks : alimentation, transport et turbulence , 2007 .
[23] Hinrich Lütjens,et al. The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas , 2008, J. Comput. Phys..
[24] Fabrice Deluzet,et al. Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations , 2010, 1008.3405.
[25] Claudia Negulescu,et al. An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro-Macro decomposition , 2011, J. Comput. Phys..
[26] Claudia Negulescu,et al. Asymptotic-preserving scheme for highly anisotropic non-linear diffusion equations , 2012, J. Comput. Phys..
[27] Jacek Narski. Anisotropic finite elements with high aspect ratio for an Asymptotic Preserving method for highly anisotropic elliptic equation , 2013 .
[28] Long Chen. FINITE ELEMENT METHOD , 2013 .
[29] Jacek Narski,et al. Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction , 2013, Comput. Phys. Commun..