Highly anisotropic nonlinear temperature balance equation and its numerical solution using asymptotic-preserving schemes of second order in time

This paper deals with the numerical study of a nonlinear, strongly anisotropic heat equation. The use of standard schemes in this situation leads to poor results, due to the high anisotropy. An Asymptotic-Preserving method is introduced in this paper, which is second-order accurate in both, temporal and spacial variables. The discretization in time is done using an L-stable Runge−Kutta scheme. The convergence of the method is shown to be independent of the anisotropy parameter , and this for fixed coarse Cartesian grids and for variable anisotropy directions. The context of this work are magnetically confined fusion plasmas.

[1]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 2017 .

[2]  E. Boschi Recensioni: J. L. Lions - Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod, Gauthier-Vi;;ars, Paris, 1969; , 1971 .

[3]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[4]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[5]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[6]  D. Aronson The porous medium equation , 1986 .

[7]  J. Wloka,et al.  Partial differential equations: Strongly elliptic differential operators and the method of variations , 1987 .

[8]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  L. Evans Measure theory and fine properties of functions , 1992 .

[10]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[11]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[12]  Timothy J. Williams,et al.  A Numerical Simulation of Groundwater Flow and Contaminant Transport on the CRAY T3D and C90 Supercomputers , 1999, Int. J. High Perform. Comput. Appl..

[13]  W. Park,et al.  Plasma simulation studies using multilevel physics models , 1999 .

[14]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[15]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[16]  B. Berkowitz Characterizing flow and transport in fractured geological media: A review , 2002 .

[17]  Derek K. Jones,et al.  Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .

[18]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[19]  J. Vázquez The Porous Medium Equation: Mathematical Theory , 2006 .

[20]  Binheng Song,et al.  Solutions of the anisotropic porous medium equation in Rn under an L1-initial value☆ , 2006 .

[21]  Sibylle Günter,et al.  Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas , 2007, J. Comput. Phys..

[22]  Patrick Tamain Etude des flux de matière dans le plasma de bord des tokamaks : alimentation, transport et turbulence , 2007 .

[23]  Hinrich Lütjens,et al.  The XTOR code for nonlinear 3D simulations of MHD instabilities in tokamak plasmas , 2008, J. Comput. Phys..

[24]  Fabrice Deluzet,et al.  Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations , 2010, 1008.3405.

[25]  Claudia Negulescu,et al.  An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro-Macro decomposition , 2011, J. Comput. Phys..

[26]  Claudia Negulescu,et al.  Asymptotic-preserving scheme for highly anisotropic non-linear diffusion equations , 2012, J. Comput. Phys..

[27]  Jacek Narski Anisotropic finite elements with high aspect ratio for an Asymptotic Preserving method for highly anisotropic elliptic equation , 2013 .

[28]  Long Chen FINITE ELEMENT METHOD , 2013 .

[29]  Jacek Narski,et al.  Asymptotic Preserving scheme for strongly anisotropic parabolic equations for arbitrary anisotropy direction , 2013, Comput. Phys. Commun..