Combining two-parameter and principal component regression estimators

This paper is concerned with the parameter estimation in linear regression model. To overcome the multicollinearity problem, a new class of estimator, namely principal component two-parameter (PCTP) estimator is proposed. The superiority of the new estimator over the principal component regression (PCR) estimator, the r − k class estimator, the r − d class estimator and the two-parameter estimator proposed by Yang and Chang (Commun Stat Theory Methods 39:923–934 2010) are discussed with respect to the mean squared error matrix (MSEM) criterion. Furthermore, we give a numerical example and a simulation study to illustrate some of the theoretical results.

[1]  Chun Jin,et al.  Unbiased ridge estimation with prior information and ridge trace , 1995 .

[2]  M. Özkale Principal components regression estimator and a test for the restrictions , 2009 .

[3]  W. Massy Principal Components Regression in Exploratory Statistical Research , 1965 .

[4]  Marvin H. J. Gruber Improving Efficiency by Shrinkage: The James--Stein and Ridge Regression Estimators , 1998 .

[5]  Nityananda Sarkar,et al.  Mean square error matrix comparison of some estimators in linear regressions with multicollinearity , 1996 .

[6]  M. Revan Özkale,et al.  Combining Unbiased Ridge and Principal Component Regression Estimators , 2009 .

[7]  Selahattin Kaçıranlar,et al.  A new biased estimator based on ridge estimation , 2008 .

[8]  B. M. Golam Kibria,et al.  A Simulation Study of Some Ridge Regression Estimators under Different Distributional Assumptions , 2010, Commun. Stat. Simul. Comput..

[9]  M. Nomura,et al.  A note on combining ridge and principal component regression , 1985 .

[10]  Hamza Erol,et al.  Mean Squared Error Matrix Comparisons of Some Biased Estimators in Linear Regression , 2003 .

[11]  Jianwen Xu,et al.  On the restricted r–k class estimator and the restricted r–d class estimator in linear regression , 2011 .

[12]  Lawrence S. Mayer,et al.  On Biased Estimation in Linear Models , 1973 .

[13]  B. M. Golam Kibria,et al.  Please Scroll down for Article Communications in Statistics -simulation and Computation on Some Ridge Regression Estimators: an Empirical Comparisons on Some Ridge Regression Estimators: an Empirical Comparisons , 2022 .

[14]  B. F. Swindel Good ridge estimators based on prior information , 1976 .

[15]  Hu Yang,et al.  A new stochastic mixed ridge estimator in linear regression model , 2010 .

[16]  Götz Trenkler,et al.  Nonnegative and positive definiteness of matrices modified by two matrices of rank one , 1991 .

[17]  Selahattin Kaçıranlar,et al.  COMBINING THE LIU ESTIMATOR AND THE PRINCIPAL COMPONENT REGRESSION ESTIMATOR , 2001 .

[18]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .

[19]  Kejian Liu Using Liu-Type Estimator to Combat Collinearity , 2003 .

[20]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .

[21]  Michael R. Baye,et al.  Combining ridge and principal component regression:a money demand illustration , 1984 .

[22]  Xinfeng Chang,et al.  A New Two-Parameter Estimator in Linear Regression , 2010 .

[23]  M. Revan Özkale,et al.  Superiority of the r-d class estimator over some estimators by the mean square error matrix criterion , 2007 .

[24]  C. Stein Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution , 1956 .