Enabling Fluorinated MOF-Based Membranes for Simultaneous Removal of H2 S and CO2 from Natural Gas.

Membrane-based gas separations are energy efficient processes; however, major challenges remain to develop high-performance membranes enabling the replacement of conventional separation processes. Herein, a new fluorinated MOF-based mixed-matrix membrane is reported, which is formed by incorporating the MOF crystals into selected polymers via a facile mixed-matrix approach. By finely controlling the molecular transport in the channels through the MOF apertures tuned by metal pillars and at the MOF-polymer interfaces, the resulting fluorinated MOF-based membranes exhibit excellent molecular sieving properties. These materials significantly outperform state-of-the-art membranes for simultaneous removal of H2 S and CO2 from natural gas-a challenging and economically important application. The robust fluorinated MOFs (NbOFFIVE-1-Ni, AlFFIVE-1-Ni), pave a way to efficient membrane separation processes that require precise discrimination of closely sized molecules.

[1]  Kai Xu,et al.  Enhanced CO2/CH4 separation performance of mixed-matrix membranes through dispersion of sorption-selective MOF nanocrystals , 2018, Journal of Membrane Science.

[2]  Yang Liu,et al.  Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations , 2018, Nature Materials.

[3]  P. Heitjans,et al.  Defibrillation of soft porous metal-organic frameworks with electric fields , 2017, Science.

[4]  Ayalew H. Assen,et al.  Valuing Metal–Organic Frameworks for Postcombustion Carbon Capture: A Benchmark Study for Evaluating Physical Adsorbents , 2017, Advanced materials.

[5]  Ayalew H. Assen,et al.  Isoreticular rare earth fcu-MOFs for the selective removal of H2S from CO2 containing gases , 2017 .

[6]  Ayalew H. Assen,et al.  Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship. , 2017, Chemical Society reviews.

[7]  M. Eddaoudi,et al.  Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration , 2017, Science.

[8]  J. Larson,et al.  Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat , 2017, Science.

[9]  Donghun Kim,et al.  Ultra-selective high-flux membranes from directly synthesized zeolite nanosheets , 2017, Nature.

[10]  Chen Zhang,et al.  Materials for next-generation molecularly selective synthetic membranes. , 2017, Nature materials.

[11]  Amy J. Cairns,et al.  Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc-MOF platform for the operative removal of H2S , 2017 .

[12]  J. Long,et al.  Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. , 2016, Nature materials.

[13]  M. Eddaoudi,et al.  A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO2 Removal and Air Capture Using Physisorption. , 2016, Journal of the American Chemical Society.

[14]  M. Eddaoudi,et al.  A metal-organic framework–based splitter for separating propylene from propane , 2016, Science.

[15]  Rajamani Krishna,et al.  Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene , 2016, Science.

[16]  Ryan P. Lively,et al.  Seven chemical separations to change the world , 2016, Nature.

[17]  M. Tsapatsis,et al.  Zeolite membranes - a review and comparison with MOFs. , 2015, Chemical Society reviews.

[18]  W. Koros,et al.  Zeolitic Imidazolate Framework-Enabled Membranes: Challenges and Opportunities. , 2015, The journal of physical chemistry letters.

[19]  Amy J. Cairns,et al.  A facile solvent-free synthesis route for the assembly of a highly CO2 selective and H2S tolerant NiSIFSIX metal-organic framework. , 2015, Chemical communications.

[20]  Freek Kapteijn,et al.  Metal-organic framework nanosheets in polymer composite materials for gas separation , 2014, Nature materials.

[21]  Yuan Peng,et al.  Metal-organic framework nanosheets as building blocks for molecular sieving membranes , 2014, Science.

[22]  Richard W. Baker,et al.  Gas Separation Membrane Materials: A Perspective , 2014 .

[23]  S. Qiu,et al.  Metal-organic framework membranes: from synthesis to separation application. , 2014, Chemical Society reviews.

[24]  W. Koros,et al.  Highly scalable ZIF‐based mixed‐matrix hollow fiber membranes for advanced hydrocarbon separations , 2014 .

[25]  Amy J. Cairns,et al.  Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture , 2014, Nature Communications.

[26]  Stephen D. Burd,et al.  Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation , 2013, Nature.

[27]  J. R. Johnson,et al.  Dense film polyimide membranes for aggressive sour gas feed separations , 2013 .

[28]  Ryan P. Lively,et al.  Water and beyond: Expanding the spectrum of large‐scale energy efficient separation processes , 2012 .

[29]  Ying Dai,et al.  High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations , 2012 .

[30]  R. Noble,et al.  Designing the Next Generation of Chemical Separation Membranes , 2011, Science.

[31]  L. Robeson,et al.  The upper bound revisited , 2008 .

[32]  Richard W. Baker,et al.  Natural Gas Processing with Membranes: An Overview , 2008 .

[33]  Yi Li,et al.  MIXED MATRIX MEMBRANES (MMMS) COMPRISING ORGANIC POLYMERS WITH DISPERSED INORGANIC FILLERS FOR GAS SEPARATION , 2007 .

[34]  W. Koros,et al.  Non-ideal effects in organic-inorganic materials for gas separation membranes , 2005 .

[35]  O. Terasaki,et al.  Microstructural Optimization of a Zeolite Membrane for Organic Vapor Separation , 2003, Science.

[36]  William J. Koros,et al.  Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking , 1999 .

[37]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[38]  M. Zaworotko,et al.  POROUS SOLIDS BY DESIGN : ZN(4,4'-BPY)2(SIF6)N.XDMF, A SINGLE FRAMEWORK OCTAHEDRAL COORDINATION POLYMER WITH LARGE SQUARE CHANNELS , 1995 .

[39]  Michael J. Zaworotko,et al.  Poröse Festkörper nach Plan: [Zn(4,4′‐bpy)2(SiF6)]n · χ DMF, ein Koordinationspolymer mit großen quadratischen Kanälen , 1995 .

[40]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .