A high gain and high linearity 94 GHz CMOS up-conversion mixer using negative resistance compensation and simplified modified derivative superposition techniques

A 94 GHz double-balanced mixer for direct up-conversion using 90 nm CMOS technology is reported. The mixer adopts an enhanced double-balanced Gilbert cell with PMOS negative resistance compensation for conversion gain (CG) enhancement and simplified modified derivative superposition in the transconductance stage for linearity improvement. In addition, an output buffer amplifier is included for loading effect suppression, CG enhancement and power consumption reduction. The mixer consumes 8.5 mW and achieves LO-port and RF-port input reflection coefficient better than −10 dB for frequencies of 81.4–110 GHz and 33.8–105.5 GHz, respectively. The mixer achieves maximal CG of 3.6 dB at 97 GHz, and CG of 2.1 ± 1.5 dB for frequencies of 77.5–100.2 GHz. That is, the corresponding 3 dB CG bandwidth is 22.7 GHz. In addition, the mixer achieves LO-RF isolation of 41.3 dB at 94 GHz. To the authors’ knowledge, the CG, LO-RF isolation, power dissipation and matching bandwidth results are one of the best data ever reported for a W-band up-conversion mixer.

[1]  B. Sheinman,et al.  An active up conversion mixer covering the entire 71–86GHz Eband range in SiGe Technology , 2013, 2013 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems (COMCAS 2013).

[2]  Y.-S. Lin,et al.  0.99 mW 3-10 GHz common-gate CMOS UWB LNA using T-match input network and self-body-bias technique , 2011 .

[3]  Jenshan Lin,et al.  An 80 GHz High Gain Double-Balanced Active Up-Conversion Mixer Using 0.18 $\mu{\rm m}$ SiGe BiCMOS Technology , 2011, IEEE Microwave and Wireless Components Letters.

[4]  Hwann-Kaeo Chiou,et al.  Compact 28-GHz subharmonically pumped resistive mixer MMIC using a lumped-element high-pass/band-pass balun , 2005 .

[5]  Lei Zhou,et al.  A Single-Chip Dual-Band 22-29-GHz/77-81-GHz BiCMOS Transceiver for Automotive Radars , 2009, IEEE J. Solid State Circuits.

[6]  Jin-Koo Rhee,et al.  94 GHz MMIC single balanced mixer for FMCW radar sensor application , 2012, Proceedings of 2012 5th Global Symposium on Millimeter-Waves.

[7]  Y. Baeyens,et al.  A W-Band Highly Linear SiGe BiCMOS Double-Balanced Active Up-Conversion Mixer Using Multi-Tanh Triplet Technique , 2010, IEEE Microwave and Wireless Components Letters.

[8]  Guo-Wei Huang,et al.  Analysis and Design of a CMOS UWB LNA With Dual-$RLC$-Branch Wideband Input Matching Network , 2010, IEEE Transactions on Microwave Theory and Techniques.

[9]  E. Kerherve,et al.  Modeling and Characterization of On-Chip Transformers for Silicon RFIC , 2007, IEEE Transactions on Microwave Theory and Techniques.

[10]  L. Larson,et al.  Modified derivative superposition method for linearizing FET low-noise amplifiers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[11]  Eran Socher,et al.  A 71–86GHz multi-tanh up-conversion mixer achieving +1dBm OP1dB in 0.13 μm SiGe technology , 2014, 2014 IEEE MTT-S International Microwave Symposium (IMS2014).

[12]  Yong Zhang,et al.  Design and performance of a W-band microstrip rat-race balanced mixer , 2010, 2010 International Conference on Microwave and Millimeter Wave Technology.

[13]  Yo-Sheng Lin,et al.  Design and implementation of a W‐band high‐performance double‐balanced active up‐conversion mixer in 90 nm CMOS technology , 2014 .

[14]  Jeng-Han Tsai,et al.  Design of 40–108-GHz Low-Power and High-Speed CMOS Up-/Down-Conversion Ring Mixers for Multistandard MMW Radio Applications , 2012, IEEE Transactions on Microwave Theory and Techniques.

[15]  Yo-Sheng Lin,et al.  Design and Analysis of a 21–29-GHz Ultra-Wideband Receiver Front-End in 0.18-$\mu$ m CMOS Technology , 2012, IEEE Transactions on Microwave Theory and Techniques.

[16]  R.W. Brodersen,et al.  Millimeter-wave CMOS design , 2005, IEEE Journal of Solid-State Circuits.

[17]  Jae-Hyun Choi,et al.  A Transceiver Module for FMCW Radar Sensors Using 94-GHz Dot-Type Schottky Diode Mixer , 2011, IEEE Sensors Journal.

[18]  Chau-Ching Chiong,et al.  A W-band image reject mixer for astronomical observation system , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[19]  J.R. Long,et al.  Monolithic transformers for silicon RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[20]  Herbert Zirath,et al.  A 115–155 GHz quadrature up-converting MMIC mixer in InP DHBT technology , 2013, 2013 European Microwave Integrated Circuit Conference.