Interactive Secure Function Computation

We consider interactive computation of randomized functions between two users with the following privacy requirement: the interaction should not reveal to either user any extra information about the other user’s input and output other than what can be inferred from the user’s own input and output. We also consider the case where privacy is required against only one of the users. For both cases, we give single-letter expressions for feasibility and optimal rates of communication. Then we discuss the role of common randomness and interaction in both privacy settings. We also study perfectly secure non-interactive computation when only one of the users computes a randomized function based on a single transmission from the other user. We characterize randomized functions which can be perfectly securely computed in this model and obtain tight bounds on the optimal message lengths in all the privacy settings.

[1]  Amos Beimel On private computation in incomplete networks , 2006, Distributed Computing.

[2]  Eyal Kushilevitz,et al.  Privacy and communication complexity , 1989, 30th Annual Symposium on Foundations of Computer Science.

[3]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[4]  Himanshu Tyagi,et al.  Common Information and Secret Key Capacity , 2013, IEEE Transactions on Information Theory.

[5]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[6]  Himanshu Tyagi,et al.  When Is a Function Securely Computable? , 2010, IEEE Transactions on Information Theory.

[7]  Manoj Prabhakaran,et al.  A Unified Characterization of Completeness and Triviality for Secure Function Evaluation , 2012, INDOCRYPT.

[8]  Amin Gohari,et al.  Achievability Proof via Output Statistics of Random Binning , 2012, IEEE Transactions on Information Theory.

[9]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[10]  David Chaum,et al.  Multiparty unconditionally secure protocols , 1988, STOC '88.

[11]  Carles Padró,et al.  Information Theoretic Security , 2013, Lecture Notes in Computer Science.

[12]  Himanshu Tyagi,et al.  Common randomness for secure computing , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[13]  Amin Gohari,et al.  Secure channel simulation , 2012, 2012 IEEE Information Theory Workshop.

[14]  Vinod M. Prabhakaran,et al.  Oblivious Transfer in Incomplete Networks , 2018, IACR Cryptol. ePrint Arch..

[15]  Himanshu Tyagi,et al.  Information Complexity Density and Simulation of Protocols , 2015, IEEE Transactions on Information Theory.

[16]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[17]  Noga Alon,et al.  Source coding and graph entropies , 1996, IEEE Trans. Inf. Theory.

[18]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[19]  Eyal Kushilevitz Privacy and Communication Complexity , 1992, SIAM J. Discret. Math..

[20]  Prakash Ishwar,et al.  Some Results on Distributed Source Coding for Interactive Function Computation , 2011, IEEE Transactions on Information Theory.

[21]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[22]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[23]  Joe Kilian,et al.  Achieving oblivious transfer using weakened security assumptions , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[24]  Pablo Piantanida,et al.  Secure Multiterminal Source Coding With Side Information at the Eavesdropper , 2011, IEEE Transactions on Information Theory.

[25]  Andreas Jakoby,et al.  Private Computation - k-Connected versus 1-Connected Networks , 2002, CRYPTO.

[26]  Anand D. Sarwate,et al.  Robust Privacy-Utility Tradeoffs Under Differential Privacy and Hamming Distortion , 2016, IEEE Transactions on Information Forensics and Security.

[27]  Manoj Prabhakaran,et al.  Towards Characterizing Securely Computable Two-Party Randomized Functions , 2018, Public Key Cryptography.

[28]  Paul W. Cuff,et al.  Distributed Channel Synthesis , 2012, IEEE Transactions on Information Theory.

[29]  Emina Soljanin,et al.  Secure Network Coding for Wiretap Networks of Type II , 2009, IEEE Transactions on Information Theory.

[30]  Amiram H. Kaspi,et al.  Two-way source coding with a fidelity criterion , 1985, IEEE Trans. Inf. Theory.

[31]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[32]  Vinod M. Prabhakaran,et al.  Communication and Randomness Lower Bounds for Secure Computation , 2015, IEEE Transactions on Information Theory.

[33]  Anderson C. A. Nascimento,et al.  On the Oblivious-Transfer Capacity of Noisy Resources , 2008, IEEE Transactions on Information Theory.

[34]  Imre Csiszár,et al.  Common randomness and secret key generation with a helper , 2000, IEEE Trans. Inf. Theory.

[35]  H. Vincent Poor,et al.  Secure lossless compression with side information , 2008, 2008 IEEE Information Theory Workshop.

[36]  Rudolf Ahlswede,et al.  On Oblivious Transfer Capacity , 2007, 2007 IEEE International Symposium on Information Theory.

[37]  Alon Orlitsky,et al.  Coding for computing , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[38]  Joe Kilian More general completeness theorems for secure two-party computation , 2000, STOC '00.

[39]  Aaron D. Wyner,et al.  The common information of two dependent random variables , 1975, IEEE Trans. Inf. Theory.

[40]  Kirill Morozov,et al.  Achieving Oblivious Transfer Capacity of Generalized Erasure Channels in the Malicious Model , 2011, IEEE Transactions on Information Theory.

[41]  Mark Braverman,et al.  From information to exact communication , 2013, STOC '13.

[42]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[43]  Navin Kashyap,et al.  On the Public Communication Needed to Achieve SK Capacity in the Multiterminal Source Model , 2015, IEEE Transactions on Information Theory.

[44]  Andrew Chi-Chih Yao,et al.  Protocols for secure computations , 1982, FOCS 1982.

[45]  Chung Chan,et al.  Secret key agreement under discussion rate constraints , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[46]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[47]  Manoj Prabhakaran,et al.  Complexity of Multiparty Computation Problems: The Case of 2-Party Symmetric Secure Function Evaluation , 2009, IACR Cryptol. ePrint Arch..

[48]  Ye Wang,et al.  On unconditionally secure multi-party sampling from scratch1 , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[49]  V. Prabhakaran,et al.  On Secure Distributed Source Coding , 2007, 2007 IEEE Information Theory Workshop.

[50]  Badih Ghazi,et al.  Communication-Rounds Tradeoffs for Common Randomness and Secret Key Generation , 2018, Electron. Colloquium Comput. Complex..

[51]  Donald Beaver Perfect Privacy For Two-Party Protocols , 1989, Distributed Computing And Cryptography.

[52]  Amin Gohari,et al.  Channel Simulation via Interactive Communications , 2012, IEEE Transactions on Information Theory.

[53]  Ning Cai,et al.  Secure Network Coding on a Wiretap Network , 2011, IEEE Transactions on Information Theory.

[54]  A. Yao,et al.  Fair exchange with a semi-trusted third party (extended abstract) , 1997, CCS '97.

[55]  Ivan Damgård,et al.  Secure Multiparty Computation and Secret Sharing , 2015 .

[56]  Ye Wang,et al.  On privacy-utility tradeoffs for constrained data release mechanisms , 2016, 2016 Information Theory and Applications Workshop (ITA).