Formation of Nanosized Products in Combustion of Metal Particles

[1]  S. Chung,et al.  Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles , 2013 .

[2]  O. Glotov Combustion of spherical agglomerates of titanium in air. I. Experimental approach , 2013 .

[3]  O. Glotov Combustion of spherical agglomerates of titanium in air. II. Results of experiments , 2013 .

[4]  S. Preis,et al.  Gas-phase photocatalytic activity of nanostructured titanium dioxide from flame aerosol synthesis , 2012 .

[5]  N. Poletaev,et al.  Degree of dispersion of metal combustion products in a laminar dust flame , 2011 .

[6]  P. Schmuki,et al.  Doped TiO2 and TiO2 nanotubes: synthesis and applications. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[7]  M. Tadé,et al.  Halogen element modified titanium dioxide for visible light photocatalysis. , 2010 .

[8]  O. Korobeinichev,et al.  Study of the CL-20 flame structure using probing molecular beam mass spectrometry , 2009 .

[9]  V. Zhukov,et al.  The evolution of 100-µm aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant. II. Results , 2008 .

[10]  V. Zhukov,et al.  Evolution of 100-µm aluminum agglomerates and initially continuous aluminum particles in the flame of a model solid propellant. I. Experimental approach , 2008 .

[11]  O. G. Glotov,et al.  Image processing of the fractal aggregates composed of nanoparticles , 2008 .

[12]  T. Akiyama,et al.  Combustion synthesis of TiO2 nanoparticles as photocatalyst , 2007 .

[13]  V. Zarko,et al.  Application of Cerimetric Methods for Determining the Metallic Aluminum Content in Ultrafine Aluminum Powders , 2007 .

[14]  A. Onischuk,et al.  Size and morphology of the nanooxide aerosol generated by combustion of an aluminum droplet , 2007 .

[15]  C. J. Tsai,et al.  Formation of metal oxide nanoparticles in combustion of titanium and aluminum droplets , 2006 .

[16]  O. Glotov Condensed combustion products of aluminized propellants. IV. Effect of the nature of nitramines on aluminum agglomeration and combustion efficiency , 2006 .

[17]  A. Nasibulin,et al.  A New Thermophoretic Precipitator for Collection of Nanometer-Sized Aerosol Particles , 2005 .

[18]  V. A. Babuk,et al.  Burning of Nano-Aluminized Composite Rocket Propellants , 2005 .

[19]  Karl K. Sabelfeld,et al.  Formation of charged aggregates of Al2O3 nanoparticles by combustion of aluminum droplets in air , 2004 .

[20]  A. Rychkov,et al.  Macrokinetics of Combustion of Monodisperse Agglomerates in the Flame of a Model Solid Propellant , 2003 .

[21]  J. Gras,et al.  Intercomparison of number concentration measurements by various aerosol particle counters , 2002 .

[22]  V. Zarko,et al.  Charges and Fractal Properties of Nanoparticles — Combustion Products of Aluminum Agglomerates , 2001 .

[23]  V. Zarko,et al.  Chemical Analysis of Aluminum as a Propellant Ingredient and Determination of Aluminum and Aluminum Nitride in Condensed Combustion Products , 2000 .

[24]  V. Zyryanov,et al.  Condensed combustion products of aluminized propellants. 1. A technique for investigating the evolution of disperse-phase particles , 1995 .

[25]  V. Zarko,et al.  Formation of Al oxide particles in combustion of aluminized condensed systems , 2013 .

[26]  V. Zarko,et al.  EVOLUTION OF ALUMINUM AGGLOMERATES MOVING IN COMBUSTION PRODUCTS OF MODEL SOLID PROPELLANT , 2002 .

[27]  Vladimir E. Zarko,et al.  Problems and prospects of investigating the formation and evolution of agglomerates by the sampling method , 2000 .

[28]  S. Friedlander,et al.  Smoke, dust, and haze , 2000 .

[29]  O. V. Glazkov,et al.  Combustion of mixtures of ultradisperse aluminum and gel-like water , 1994 .

[30]  G. Reischl,et al.  Comparison of the novosibirsk automated diffusion battery with the Vienna Electro Mobility Spectrometer , 1991 .