The Resolvent Order: A Unification of the Orders by Zarantonello, by Loewner, and by Moreau

We introduce and investigate the resolvent order, which is a binary relation on the set of firmly nonexpansive mappings. It unifies well-known orders introduced by Loewner (for positive semidefinite matrices) and by Zarantonello (for projectors onto convex cones). A connection with Moreau's order of convex functions is also presented. We also construct partial orders on (quotient sets of) proximal mappings and convex functions. Various examples illustrate our results.

[1]  Karl Löwner Über monotone Matrixfunktionen , 1934 .

[2]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[3]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[4]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[5]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[6]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[7]  W. A. Kirk,et al.  Topics in Metric Fixed Point Theory , 1990 .

[8]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[9]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[10]  S. Simons Minimax and monotonicity , 1998 .

[11]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[12]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[13]  S. Simons From Hahn-Banach to monotonicity , 2008 .

[14]  A. Iusem,et al.  Set-valued mappings and enlargements of monotone operators , 2008 .

[15]  Heinz H. Bauschke,et al.  The Baillon-Haddad Theorem Revisited , 2009, 0906.0807.

[16]  Jonathan M. Borwein,et al.  Fifty years of maximal monotonicity , 2010, Optim. Lett..

[17]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[18]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[19]  Heinz H. Bauschke,et al.  The Resolvent Average of Monotone Operators: Dominant and Recessive Properties , 2015, SIAM J. Optim..