The optical design of CHARIS: an exoplanet IFS for the Subaru telescope

High-contrast imaging techniques now make possible both imaging and spectroscopy of planets around nearby stars. We present the optical design for the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS), a lenslet-based, cryogenic integral field spectrograph (IFS) for imaging exoplanets on the Subaru telescope. The IFS will provide spectral information for 138 × 138 spatial elements over a 2.07 arcsec × 2.07 arcsec field of view (FOV). CHARIS will operate in the near infrared (λ = 1.15 - 2.5μm) and will feature two spectral resolution modes of R ~ 18 (low-res mode) and R ~ 73 (high-res mode). Taking advantage of the Subaru telescope adaptive optics systems and coronagraphs (AO188 and SCExAO), CHARIS will provide sufficient contrast to obtain spectra of young self-luminous Jupiter-mass exoplanets. CHARIS will undergo CDR in October 2013 and is projected to have first light by the end of 2015. We report here on the current optical design of CHARIS and its unique innovations.

[1]  Olivier Guyon,et al.  Current status of the laser guide star adaptive optics system for Subaru Telescope , 2008, Astronomical Telescopes + Instrumentation.

[2]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[3]  Jr.,et al.  A New High Contrast Imaging Program at Palomar Observatory , 2010, 1012.0008.

[4]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[5]  T. Fusco,et al.  A probable giant planet imaged in the beta Pictoris disk. VLT/NaCo deep L'-band imaging , 2008, 0811.3583.

[6]  Frantz Martinache,et al.  The Subaru coronagraphic extreme AO project: progress report , 2011, Optical Engineering + Applications.

[7]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[8]  David G. Bonfield,et al.  GFP-IFS: a coronagraphic integral field spectrograph for the APO 3.5-meter telescope , 2008, Astronomical Telescopes + Instrumentation.

[9]  Brian J. Bauman,et al.  The integral field spectrograph for the Gemini planet imager , 2014, Astronomical Telescopes and Instrumentation.

[10]  D. Fantinel,et al.  Optical design and test of the BIGRE-based IFS of SPHERE , 2011, Optical Systems Design.

[11]  E. Pecontal,et al.  3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER. , 1995 .

[12]  James Lyke,et al.  OSIRIS: a diffraction limited integral field spectrograph for Keck , 2006, SPIE Astronomical Telescopes + Instrumentation.

[13]  Frantz Martinache,et al.  Conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru telescope , 2012, Other Conferences.

[14]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[15]  Olivier Guyon,et al.  Performance of Subaru adaptive optics system AO188 , 2010, Astronomical Telescopes + Instrumentation.

[16]  Bruce E. Woodgate,et al.  An integral field spectrograph design concept for the terrestrial planet finder coronagraph , 2006 .

[17]  Timothy D. Brandt,et al.  DIRECT IMAGING DISCOVERY OF A “SUPER-JUPITER” AROUND THE LATE B-TYPE STAR κ And , 2012, 1211.3744.

[18]  Frantz Martinache,et al.  Design of the CHARIS integral field spectrograph for exoplanet imaging , 2013, Optics & Photonics - Optical Engineering + Applications.

[19]  W. Marsden I and J , 2012 .

[20]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[21]  Frantz Martinache,et al.  Wavefront control with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system , 2011, Optical Engineering + Applications.

[22]  Tomasz S Tkaczyk,et al.  Compound prism design principles, I. , 2011, Applied optics.

[23]  Olivier Guyon,et al.  Commissioning status of Subaru laser guide star adaptive optics system , 2010, Astronomical Telescopes + Instrumentation.

[24]  C. A. Grady,et al.  DIRECT IMAGING OF A COLD JOVIAN EXOPLANET IN ORBIT AROUND THE SUN-LIKE STAR GJ 504 , 2013, 1307.2886.

[25]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[26]  Olivier Guyon,et al.  CAN GROUND-BASED TELESCOPES DETECT THE OXYGEN 1.27 μm ABSORPTION FEATURE AS A BIOMARKER IN EXOPLANETS? , 2012, 1206.0558.