Modifying Corpus Annotation to Support the Analysis of Learner Language

A crucial question for automatically analyzing learner language is to determine which grammatical information is relevant and useful for learner feedback. Based on knowledge about how learner language varies in its grammatical properties, we propose a framework for reusing analyses found in corpus annotation and illustrate its applicability to Korean postpositional particles. Simple transformations of the corpus annotation allow one to quickly use state-of-the-art parsing methods.

[1]  Martha Palmer,et al.  A Morphological Tagger for Korean: Statistical Tagging Combined with Corpus-Based Morphological Rule Application , 2004, Machine Translation.

[2]  Walt Detmar Meurers,et al.  Refining Syntactic Categories Using Local Contexts — Experiments in Unlexicalized PCFG Parsing , 2007 .

[3]  James Hye Suk Yoon,et al.  Non-morphological Determination of Nominal Particle Ordering in Korean , 2004 .

[4]  Hitoshi Isahara,et al.  Automatic Error Detection in the Japanese Learners’ English Spoken Data , 2003, ACL.

[5]  Anne Vandeventer Faltin Syntactic error diagnosis in the context of computer assisted language learning , 2003 .

[6]  Ola Knutsson,et al.  The Role of PP Attachment in Preposition Generation , 2008, CICLing.

[7]  Jens Nilsson,et al.  Reconstruction of the Swedish Treebank Talbanken. , 2005 .

[8]  Walt Detmar Meurers Diagnosing Meaning Errors in Short Answers to Reading Comprehension Questions , 2008 .

[9]  Seok Bae Jang,et al.  Why Is Zero Marking Important in Korean? , 2005, IJCNLP.

[10]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[11]  Seok Bae Jang,et al.  Annotation of Korean Learner Corpora for Particle Error Detection , 2013 .

[12]  Joakim Nivre,et al.  MaltParser: A Language-Independent System for Data-Driven Dependency Parsing , 2007, Natural Language Engineering.

[13]  Rachele De Felice,et al.  A Classifier-Based Approach to Preposition and Determiner Error Correction in L2 English , 2008, COLING.

[14]  Noriko Nagata,et al.  An Effective Application of Natural Language Processing in Second Language Instruction , 2013, CALICO Journal.

[15]  Na-Rae Han,et al.  Bracketing Guidelines for Penn Korean TreeBank , 2001 .

[16]  Sabine Buchholz,et al.  CoNLL-X Shared Task on Multilingual Dependency Parsing , 2006, CoNLL.

[17]  Naoki Isu,et al.  A Feedback-Augmented Method for Detecting Errors in the Writing of Learners of English , 2006, ACL.

[18]  Martha Palmer,et al.  Development and Evaluation of a Korean Treebank and its Application to NLP , 2002, LREC.

[19]  Trude Heift,et al.  Heift Trude Schulze Mathias. Errors and Intelligence in Computer-Assisted Language Learning: Parsers and Pedagogues Routledge (Routledge series in computer-assisted language learning), 2007. xviii+283 Pages. ISBN: 978-0-415-36191-0. Price: $115 , 2009, ReCALL.

[20]  Jens Eeg-Olofsson,et al.  Automatic Grammar Checking for Second Language Learners – the Use of Prepositions , 2003 .

[21]  Stephen G. Pulman,et al.  Automatically Acquiring Models of Preposition Use , 2007, ACL 2007.

[22]  Joakim Nivre,et al.  An Efficient Algorithm for Projective Dependency Parsing , 2003, IWPT.

[23]  서광준,et al.  어절 사이의 의존관계를 이용한 한국어 구문 분석기 = A Korean language parser using syntactic dependency relations between word-phrases , 1993 .

[24]  Dan Klein,et al.  Accurate Unlexicalized Parsing , 2003, ACL.

[25]  Na-Rae Han,et al.  Detecting errors in English article usage by non-native speakers , 2006, Natural Language Engineering.

[26]  Michael Collins,et al.  Head-Driven Statistical Models for Natural Language Parsing , 2003, CL.

[27]  Sebastian Riedel,et al.  The CoNLL 2007 Shared Task on Dependency Parsing , 2007, EMNLP.

[28]  Markus Dickinson,et al.  A balancing act: how can intelligent computer-generated feedback be provided in learner-to-learner interactions? , 2008 .

[29]  Markus Dickinson Rule Equivalence for Error Detection , 2006 .

[30]  Na-Rae Han,et al.  Detection of Grammatical Errors Involving Prepositions , 2007, ACL 2007.

[31]  Dan Klein,et al.  Learning Accurate, Compact, and Interpretable Tree Annotation , 2006, ACL.

[32]  Eugene Charniak,et al.  Reranking and Self-Training for Parser Adaptation , 2006, ACL.

[33]  Koldo Gojenola,et al.  Detecting Erroneous Uses of Complex Postpositions in an Agglutinative Language , 2008, COLING.

[34]  Jianfeng Gao,et al.  Using Contextual Speller Techniques and Language Modeling for ESL Error Correction , 2008, IJCNLP.

[35]  Kathleen F. McCoy,et al.  Recognizing Syntactic Errors in the Writing of Second Language Learners , 1998, ACL.

[36]  Hoojung Chung,et al.  Statistical Korean dependency parsing model based on the surface contextual information , 2004 .

[37]  Chris Brew,et al.  A Resource-light Approach to Russian Morphology: Tagging Russian using Czech resources , 2004, EMNLP.

[38]  H. Kucera,et al.  Computational analysis of present-day American English , 1967 .

[39]  Eugene Charniak,et al.  Coarse-to-Fine n-Best Parsing and MaxEnt Discriminative Reranking , 2005, ACL.

[40]  Martin Chodorow,et al.  The Ups and Downs of Preposition Error Detection in ESL Writing , 2008, COLING.

[41]  Fernando Pereira,et al.  Online Learning of Approximate Dependency Parsing Algorithms , 2006, EACL.