TGFβ Signaling in Growth Control, Cancer, and Heritable Disorders

[1]  Andrew V. Nguyen,et al.  Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. , 2000, Development.

[2]  S. Choe,et al.  Three-finger toxin fold for the extracellular ligand-binding domain of the type II activin receptor serine kinase. , 1999, Nature Structural Biology.

[3]  Nobuyuki Shishido,et al.  Mice Lacking p27 Kip1 Display Increased Body Size, Multiple Organ Hyperplasia, Retinal Dysplasia, and Pituitary Tumors , 1996, Cell.

[4]  S. Mundlos,et al.  Cbfa1, a Candidate Gene for Cleidocranial Dysplasia Syndrome, Is Essential for Osteoblast Differentiation and Bone Development , 1997, Cell.

[5]  Scott E. Kern,et al.  DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1 , 1996, Science.

[6]  Chi V. Dang,et al.  c-Myc Target Genes Involved in Cell Growth, Apoptosis, and Metabolism , 1999, Molecular and Cellular Biology.

[7]  Y. Yuasa,et al.  Genomic structure of the transforming growth factor beta type II receptor gene and its mutations in hereditary nonpolyposis colorectal cancers. , 1996, Cancer research.

[8]  D. Kingsley,et al.  Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. , 1996, Development.

[9]  J. Massagué,et al.  Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-β in cells lacking the CDK inhibitor p15 , 1997, Nature.

[10]  Georgy Koentges,et al.  Neural Crest Apoptosis and the Establishment of Craniofacial Pattern: An Honorable Death , 1996, Molecular and Cellular Neuroscience.

[11]  R Wieser,et al.  TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. , 1999, The Journal of clinical investigation.

[12]  P. Kaldis,et al.  Transforming growth factor beta targeted inactivation of cyclin E:cyclin-dependent kinase 2 (Cdk2) complexes by inhibition of Cdk2 activating kinase activity. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Ostrer,et al.  TβR-I(6A) Is a Candidate Tumor Susceptibility Allele , 1999 .

[14]  Irene L Andrulis,et al.  MADR2 Maps to 18q21 and Encodes a TGFβ–Regulated MAD–Related Protein That Is Functionally Mutated in Colorectal Carcinoma , 1996, Cell.

[15]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[16]  J. Picard,et al.  Persistence of Müllerian derivatives in males. , 1999, American journal of medical genetics.

[17]  Allan Balmain,et al.  TGFβ1 Inhibits the Formation of Benign Skin Tumors, but Enhances Progression to Invasive Spindle Carcinomas in Transgenic Mice , 1996, Cell.

[18]  J. Massagué,et al.  Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. , 1998, Genes & development.

[19]  L. Attisano,et al.  Mutations in the tumor suppressors Smad2 and Smad4 inactivate transforming growth factor beta signaling by targeting Smads to the ubiquitin-proteasome pathway. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J. Massagué,et al.  The subcellular locations of p15(Ink4b) and p27(Kip1) coordinate their inhibitory interactions with cdk4 and cdk2. , 1997, Genes & development.

[21]  F. Luyten,et al.  A human chondrodysplasia due to a mutation in a TGF-β superfamily member , 1996, Nature Genetics.

[22]  P. Beachy,et al.  Genetics of ventral forebrain development and holoprosencephaly. , 2000, Current opinion in genetics & development.

[23]  W. Reardon,et al.  Mutations in CDMP1 cause autosomal dominant brachydactyly type C , 1997, Nature Genetics.

[24]  H. Ostrer,et al.  TbetaR-I(6A) is a candidate tumor susceptibility allele. , 1999, Cancer research.

[25]  A. Schier,et al.  Nodal signalling in vertebrate development , 2000, Nature.

[26]  M. Ewen,et al.  p53-dependent repression of CDK4 translation in TGF-beta-induced G1 cell-cycle arrest. , 1995, Genes & development.

[27]  E. Buscarini,et al.  Hereditary haemorrhagic telangiectasia with extensive liver involvement is not caused by either HHT1 or HHT2. , 1996, Journal of medical genetics.

[28]  R. W. Padgett,et al.  TGF‐β signaling, Smads, and tumor suppressors , 1998 .

[29]  L. Wakefield,et al.  Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. , 1997, Cancer research.

[30]  H. Lodish,et al.  A deletion in the gene for transforming growth factor beta type I receptor abolishes growth regulation by transforming growth factor beta in a cutaneous T-cell lymphoma. , 1999, Blood.

[31]  T. Kirsch,et al.  Crystal structure of the BMP-2–BRIA ectodomain complex , 2000, Nature Structural Biology.

[32]  R. Trembath,et al.  Heterozygous germline mutations in BMPR2, encoding a TGF-β receptor, cause familial primary pulmonary hypertension , 2000, Nature Genetics.

[33]  M. Reiss Transforming growth factor-beta and cancer: a love-hate relationship? , 1997, Oncology research.

[34]  M. Ohue,et al.  Microsatellite instability and mutated type II transforming growth factor-beta receptor gene in gliomas. , 1997, Cancer letters.

[35]  Liliana Attisano,et al.  SARA, a FYVE Domain Protein that Recruits Smad2 to the TGFβ Receptor , 1998, Cell.

[36]  H. Moses,et al.  Transforming Growth Factor β and Cell Cycle Regulation , 1995 .

[37]  M. Owen,et al.  Mutations Involving the Transcription Factor CBFA1 Cause Cleidocranial Dysplasia , 1997, Cell.

[38]  S. Valgeirsdóttir,et al.  Xenopus Smad4beta is the co-Smad component of developmentally regulated transcription factor complexes responsible for induction of early mesodermal genes. , 1999, Developmental biology.

[39]  G. Capellá,et al.  Disruption of the antiproliferative TGF-β signaling pathways in human pancreatic cancer cells , 1998, Oncogene.

[40]  N. Pece-Barbara,et al.  Analysis of ALK-1 and endoglin in newborns from families with hereditary hemorrhagic telangiectasia type 2. , 2000, Human molecular genetics.

[41]  E. Nishida,et al.  Regulation of intracellular dynamics of Smad4 by its leucine‐rich nuclear export signal , 2000, EMBO reports.

[42]  Jian-ming Li,et al.  Smad3-Smad4 and AP-1 Complexes Synergize in Transcriptional Activation of the c-Jun Promoter by Transforming Growth Factor β , 1999, Molecular and Cellular Biology.

[43]  P. Howe,et al.  TGF‐β induces fibronectin synthesis through a c‐Jun N‐terminal kinase‐dependent, Smad4‐independent pathway , 1999, The EMBO journal.

[44]  Correction: Role of Transforming Growth Factor (beta) in Human Disease. , 2000, The New England journal of medicine.

[45]  Takeo Iwama,et al.  Higher frequency of Smad4 gene mutation in human colorectal cancer with distant metastasis , 1999, Oncogene.

[46]  L. M. Facchini,et al.  The molecular role of Myc in growth and transformation: recent discoveries lead to new insights , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[47]  K. Miyazono,et al.  Interaction and Functional Cooperation of PEBP2/CBF with Smads , 1999, The Journal of Biological Chemistry.

[48]  C. Marshall,et al.  How do small GTPase signal transduction pathways regulate cell cycle entry? , 1999, Current opinion in cell biology.

[49]  D. Dumont,et al.  A murine model of hereditary hemorrhagic telangiectasia. , 1999, The Journal of clinical investigation.

[50]  M. Reiss,et al.  Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. , 1998, Cancer research.

[51]  N. Wake,et al.  Analysis of specific gene mutations in the transforming growth factor-beta signal transduction pathway in human ovarian cancer. , 2000, Cancer research.

[52]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[53]  L. Gold The role for transforming growth factor-beta (TGF-beta) in human cancer. , 1999, Critical reviews in oncogenesis.

[54]  C. Cremers,et al.  Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis , 1999, Nature Genetics.

[55]  H. Lodish,et al.  Role of transforming growth factor beta in human disease. , 2000, The New England journal of medicine.

[56]  Kirby D. Johnson,et al.  Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic , 1997, Nature.

[57]  J. Graff,et al.  Smad3 Mutant Mice Develop Metastatic Colorectal Cancer , 1998, Cell.

[58]  K. Miyazono,et al.  BMP type II receptor is required for gastrulation and early development of mouse embryos. , 2000, Developmental biology.

[59]  M. Barcellos-Hoff,et al.  Transforming growth factor-β and breast cancer: Mammary gland development , 2000, Breast Cancer Research.

[60]  H. Moses,et al.  Transforming growth factor beta and cell cycle regulation. , 1995, Cancer research.

[61]  H. Poulsen,et al.  Transforming growth factor and cancer , 1995 .

[62]  James M. Roberts,et al.  CDK inhibitors: positive and negative regulators of G1-phase progression. , 1999, Genes & development.

[63]  K. Kinzler,et al.  Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. , 1995, Cancer research.

[64]  S. Kern,et al.  Transforming growth factor‐β responsiveness in DPC4/SMAD4‐null cancer cells , 1999 .

[65]  J. Westendorf,et al.  Mammalian runt‐domain proteins and their roles in hematopoiesis, osteogenesis, and leukemia , 1999, Journal of cellular biochemistry.

[66]  Yigong Shi,et al.  Crystal Structure of a Smad MH1 Domain Bound to DNA Insights on DNA Binding in TGF-β Signaling , 1998, Cell.

[67]  J. Massagué,et al.  Controlling TGF-β signaling , 2000, Genes & Development.

[68]  R. Hruban,et al.  Genetic alterations of the transforming growth factor beta receptor genes in pancreatic and biliary adenocarcinomas. , 1998, Cancer research.

[69]  B. Haye,et al.  Involvement of the p38 mitogen‐activated protein kinase pathway in tissue inhibitor of metalloproteinases‐1‐induced erythroid differentiation , 2000, FEBS letters.

[70]  K. Lewis,et al.  Betaglycan binds inhibin and can mediate functional antagonism of activin signalling , 2000, Nature.

[71]  Y. Yatabe,et al.  Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers. , 1996, Cancer research.

[72]  A. Iavarone,et al.  E2F and Histone Deacetylase Mediate Transforming Growth Factor β Repression of cdc25A during Keratinocyte Cell Cycle Arrest , 1999, Molecular and Cellular Biology.

[73]  M. Barbacid,et al.  Limited overlapping roles of P15INK4b and P18INK4c cell cycle inhibitors in proliferation and tumorigenesis , 2000, The EMBO journal.

[74]  J. Massagué,et al.  TGF- SIGNAL TRANSDUCTION , 1998 .

[75]  R. Derynck,et al.  Transcriptional Activators of TGF-β Responses: Smads , 1998, Cell.

[76]  L. Baudhuin,et al.  Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1 , 2000, Nature Cell Biology.

[77]  S. Hodge,et al.  Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. , 2000, American journal of human genetics.

[78]  W. Wooster,et al.  Crystal structure of , 2005 .

[79]  Keunchil Park,et al.  Expression of Transforming Growth Factor β Type II Receptor Reduces Tumorigenicity in Human Gastric Cancer Cells , 1997 .

[80]  E. Nishida,et al.  Identification of Two Smad4 Proteins in Xenopus , 1999, The Journal of Biological Chemistry.

[81]  A. Guttmacher,et al.  Hereditary hemorrhagic telangiectasia. , 1995, The New England journal of medicine.

[82]  E. Zackai,et al.  Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination , 2000, Nature Genetics.

[83]  M. Goumans,et al.  Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. , 2000, The International journal of developmental biology.

[84]  A. McMahon,et al.  Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. , 1998, Genes & development.

[85]  S. Kern,et al.  Transforming growth factor-beta responsiveness in DPC4/SMAD4-null cancer cells. , 1999, Molecular carcinogenesis.

[86]  J. Yokota,et al.  Mutation analysis of coding sequences of the entire transforming growth factor beta type II receptor gene in sporadic human colon cancer using genomic DNA and Intron primers , 1997, Oncogene.

[87]  D. Beach,et al.  Cdc25 cell-cycle phosphatase as a target of c-myc , 1996, Nature.

[88]  Xiao‐Jing Wang,et al.  Aberrant cell cycle progression contributes to the early-stage accelerated carcinogenesis in transgenic epidermis expressing the dominant negative TGFβRII , 2000, Oncogene.

[89]  J. Massagué,et al.  Transcriptional control by the TGF‐β/Smad signaling system , 2000 .

[90]  J. Massagué,et al.  Smad1 Recognition and Activation by the ALK1 Group of Transforming Growth Factor-β Family Receptors* , 1999, The Journal of Biological Chemistry.

[91]  D. Marchuk,et al.  Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. , 2000, Developmental biology.

[92]  Yigong Shi,et al.  A structural basis for mutational inactivation of the tumour suppressor Smad4 , 1997, Nature.

[93]  K. Kinzler,et al.  Human Smad3 and Smad4 are sequence-specific transcription activators. , 1998, Molecular cell.

[94]  Makoto Sato,et al.  Targeted Disruption of Cbfa1 Results in a Complete Lack of Bone Formation owing to Maturational Arrest of Osteoblasts , 1997, Cell.

[95]  D. Kingsley,et al.  GDF5 coordinates bone and joint formation during digit development. , 1999, Developmental biology.

[96]  L. Attisano,et al.  Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[97]  F. Luyten,et al.  Mechanisms of GDF-5 action during skeletal development. , 1999, Development.

[98]  R. Sutherland,et al.  Mechanisms of Cyclin-Dependent Kinase Inactivation by Progestins , 1998, Molecular and Cellular Biology.

[99]  G. Hannon,et al.  p53-Independent Role of MDM2 in TGF-β1 Resistance , 1998 .

[100]  Kathleen R. Cho,et al.  A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. , 1995, Cancer research.

[101]  P. Hoodless,et al.  Specific Activation of Smad1 Signaling Pathways by the BMP7 Type I Receptor, ALK2* , 1998, The Journal of Biological Chemistry.

[102]  Kohei Miyazono,et al.  TGF-β signalling from cell membrane to nucleus through SMAD proteins , 1997, Nature.

[103]  A. McMahon,et al.  Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. , 1998, Science.

[104]  S. Germain,et al.  Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. , 2000, Genes & development.

[105]  J. Massagué,et al.  The nuclear import function of Smad2 is masked by SARA and unmasked by TGFb-dependent phosphorylation , 2000, Nature Cell Biology.

[106]  Frank P. Luyten,et al.  Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1 , 1997, Nature Genetics.

[107]  S. R. Hann,et al.  A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta -induced cell-cycle arrest. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[108]  T. Kirsch,et al.  BMP‐2 antagonists emerge from alterations in the low‐affinity binding epitope for receptor BMPR‐II , 2000, The EMBO journal.

[109]  H. Moses,et al.  Interdependent SMAD and JNK Signaling in Transforming Growth Factor-β-mediated Transcription* , 1999, The Journal of Biological Chemistry.

[110]  J. Massagué,et al.  A Smad Transcriptional Corepressor , 1999, Cell.

[111]  R. W. Padgett,et al.  TGF-beta signaling, Smads, and tumor suppressors. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[112]  R. Weinberg,et al.  Transforming growth factor beta effects on expression of G1 cyclins and cyclin-dependent protein kinases. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[113]  T. Iwama,et al.  Transforming growth factor beta type II receptor gene mutations in adenomas from hereditary nonpolyposis colorectal cancer. , 1997, Gastroenterology.

[114]  J. Massagué,et al.  Controlling TGF-beta signaling. , 2000, Genes & development.

[115]  A. Saltzman,et al.  Transforming Growth Factor-β-Mediated Apoptosis in the Ramos B-Lymphoma Cell Line Is Accompanied by Caspase Activation and Bcl-XLDownregulation , 1998 .

[116]  C. Arteaga,et al.  Transforming Growth Factor-β and Breast Cancer , 1999 .

[117]  J. Massagué,et al.  Betaglycan presents ligand to the TGFβ signaling receptor , 1993, Cell.

[118]  J. Massagué,et al.  Myc Downregulation by Transforming Growth Factor β Required for Activation of the p15Ink4b G1 Arrest Pathway , 1999, Molecular and Cellular Biology.

[119]  A. Iavarone,et al.  Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. , 1995, Genes & development.

[120]  Gregory J. Hannon,et al.  pl5INK4B is a potentia| effector of TGF-β-induced cell cycle arrest , 1994, Nature.

[121]  N. Pavletich Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. , 1999, Journal of molecular biology.

[122]  D. Marchuk,et al.  Expression analysis of endoglin missense and truncation mutations: insights into protein structure and disease mechanisms. , 2000, Human molecular genetics.

[123]  R. Weinberg,et al.  SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signaling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[124]  K. Kinzler,et al.  Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. , 1999, Cancer research.

[125]  S. Tashiro,et al.  ATF-2 Is a Common Nuclear Target of Smad and TAK1 Pathways in Transforming Growth Factor-β Signaling* , 1999, The Journal of Biological Chemistry.

[126]  Naoto Ueno,et al.  Interaction between Wnt and TGF-β signalling pathways during formation of Spemann's organizer , 2000, Nature.

[127]  R. Derynck,et al.  Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription , 1998, Nature.

[128]  Y G Chen,et al.  Engagement of bone morphogenetic protein type IB receptor and Smad1 signaling by anti-Müllerian hormone and its type II receptor. , 2000, The Journal of biological chemistry.

[129]  H. Beug,et al.  TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis , 1998, Current Biology.

[130]  A. Baldini,et al.  Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia , 1997, Nature Genetics.

[131]  Smads and early developmental signaling by the TGFbeta superfamily. , 1998, Genes & development.

[132]  M. Gimbrone,et al.  A role for Smad6 in development and homeostasis of the cardiovascular system , 2000, Nature Genetics.

[133]  L. Pradayrol TGF-b : signal transduction pathways and tumor suppressor genes , 2000 .

[134]  J. Massagué,et al.  Determinants of specificity in TGF-beta signal transduction. , 1998, Genes & development.

[135]  R. H. Chen,et al.  Involvement of caspase family proteases in transforming growth factor-beta-induced apoptosis. , 1997, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[136]  A. Kulkarni,et al.  Defective haematopoiesis and vasculogenesis in transforming growth factor-beta 1 knock out mice. , 1995, Development.

[137]  P. Hoodless,et al.  Formation of the definitive endoderm is a Smad2-dependent process , 2000 .

[138]  P. Yaswen,et al.  Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells , 1997, Molecular and cellular biology.

[139]  L. Aaltonen,et al.  Mutations in the SMAD4/DPC4 gene in juvenile polyposis. , 1998, Science.

[140]  D. Marchuk,et al.  Expression analysis of four endoglin missense mutations suggests that haploinsufficiency is the predominant mechanism for hereditary hemorrhagic telangiectasia type 1. , 1999, Human molecular genetics.

[141]  E. Gabrielson,et al.  The S387Y mutations of the transforming growth factor-beta receptor type I gene is uncommon in metastases of breast cancer and other common types of adenocarcinoma. , 1999, Cancer research.

[142]  K. Kinzler,et al.  Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. , 1995, Science.

[143]  R. Behringer,et al.  High Specificity of Müllerian-Inhibiting Substance Signaling in Vivo. , 1999, Endocrinology.

[144]  M. Orgebin-Crist,et al.  Molecular mechanisms of hormone-mediated Müllerian duct regression: involvement of beta-catenin. , 2000, Development.

[145]  J. Massagué,et al.  A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. , 1999, Genes & development.

[146]  Hiroyuki Miyoshi,et al.  Intestinal Tumorigenesis in Compound Mutant Mice of both Dpc4(Smad4) and Apc Genes , 1998, Cell.

[147]  J. Massagué,et al.  BMP signaling and vertebrate limb development. , 1997, Cold Spring Harbor symposia on quantitative biology.

[148]  N. Copeland,et al.  Limb alterations in brachypodism mice due to mutations in a new member of the TGFβ-superfamily , 1994, Nature.

[149]  T. Mitsudomi,et al.  Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. , 1996, Cancer research.

[150]  L. Wakefield,et al.  Transgenic Mice Overexpressing a Dominant-negative Mutant Type II Transforming Growth Factor β Receptor Show Enhanced Tumorigenesis in the Mammary Gland and Lung in Response to the Carcinogen 7,12-Dimethylbenz-[a]-anthracene , 1997 .

[151]  L. Wakefield,et al.  Transforming growth factor-β1 is a new form of tumor suppressor with true haploid insufficiency , 1998, Nature Medicine.

[152]  H. Taussig,et al.  Primary pulmonary hypertension. , 1952, A.M.A. American journal of diseases of children.

[153]  Morgan Huse,et al.  Crystal Structure of the Cytoplasmic Domain of the Type I TGF β Receptor in Complex with FKBP12 , 1999, Cell.

[154]  L. Raftery,et al.  TGF-beta family signal transduction in Drosophila development: from Mad to Smads. , 1999, Developmental biology.

[155]  Qiang Zhou,et al.  The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. , 1999, Genes & development.

[156]  Luzhe Sun,et al.  Demonstration That Mutation of the Type II Transforming Growth Factor β Receptor Inactivates Its Tumor Suppressor Activity in Replication Error-positive Colon Carcinoma Cells (*) , 1995, The Journal of Biological Chemistry.

[157]  M. O’Connor,et al.  TAK1 Participates in c-Jun N-Terminal Kinase Signaling during Drosophila Development , 2000, Molecular and Cellular Biology.

[158]  P. Hoodless,et al.  Targeted Disruption in Murine Cells Reveals Variable Requirement for Smad4 in Transforming Growth Factor β-related Signaling* , 2000, The Journal of Biological Chemistry.

[159]  T. Grundström,et al.  Smad and AML Proteins Synergistically Confer Transforming Growth Factor β1 Responsiveness to Human Germ-line IgA Genes* , 2000, The Journal of Biological Chemistry.

[160]  S. Mundlos Cleidocranial dysplasia: clinical and molecular genetics , 1999, Journal of medical genetics.

[161]  B. Hogan,et al.  Bone morphogenetic proteins: multifunctional regulators of vertebrate development. , 1996, Genes & development.

[162]  P. Donahoe,et al.  Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[163]  Lin Chen,et al.  Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice , 2000, Oncogene.