Measure of chaos and adaptive synchronization of chaotic satellite systems

In this paper, we analyze the chaotic behaviour of satellite system through the dissipative, equilibrium points, bifurcation diagrams, Poincare section maps, Lyapunov exponents and Kaplan–Yorke dimension. We observe the qualitative behaviour of satellite systems through these tools to justify the chaos in the system. We obtain the equilibrium points of chaotic satellite system. At each equilibrium point we yield the eigenvalue of Jacobian matrix of satellite system and verify the unstable regions. We calculate Kaplan–Yorke dimension, $$D_{KY}= 2.1905$$DKY=2.1905. Adaptive synchronization for two identical satellite systems is presented. The qualitative and simulated results are provided for verification of systems.

[1]  Andrew Y. T. Leung,et al.  Chaotic dynamics of an asymmetrical gyrostat , 2001 .

[2]  Ayub Khan,et al.  Analysis and hyper-chaos control of a new 4-D hyper-chaotic system by using optimal and adaptive control design , 2017 .

[3]  Ayub Khan,et al.  Measuring chaos and synchronization of chaotic satellite systems using sliding mode control , 2018 .

[4]  S. Smale Differentiable dynamical systems , 1967 .

[5]  Graham G. Swinerd,et al.  Dynamics of Spacecraft , 2011 .

[6]  J.Z. Liu,et al.  Flexible Satellite Attitude Control Via Sliding Mode Technique , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[7]  Zhi-Hong Guan,et al.  Adaptive synchronization for Chen chaotic system with fully unknown parameters , 2004 .

[8]  Sadaoui Djaouida Synchronization of a Perturbed Satellite Attitude Motion , 2014 .

[9]  Ju H. Park Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter , 2007 .

[10]  L. M. Saha,et al.  Characterization of Attractors in Gumowski-Mira Map Using Fast Lyapunov Indicators , 2006 .

[11]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[12]  Marcel J. Sidi,et al.  Spacecraft Dynamics and Control: A Practical Engineering Approach , 1997 .

[13]  G. Duan,et al.  LMIs in Control Systems: Analysis, Design and Applications , 2013 .

[14]  Antonia J. Jones,et al.  The control of higher dimensional chaos: comparative results for the chaotic satellite attitude control problem , 2000 .

[15]  Ayub Khan,et al.  Study of chaos in chaotic satellite systems , 2017 .

[16]  Reza Esmaelzadeh,et al.  Control and Synchronization Chaotic Satellite using Active Control , 2014 .

[17]  Jyh-Ching Juang,et al.  An LMI-based nonlinear attitude control approach , 2003, IEEE Trans. Control. Syst. Technol..

[18]  W.E. Dixon,et al.  Adaptive neural network satellite attitude control in the presence of inertia and CMG actuator uncertainties , 2008, 2008 American Control Conference.

[19]  Ling-yun Kong,et al.  The control of chaotic attitude motion of a perturbed spacecraft , 2006, 2006 Chinese Control Conference.

[20]  Andrew Y. T. Leung,et al.  CHAOTIC ATTITUDE MOTION OF SATELLITES UNDER SMALL PERTURBATION TORQUES , 2000 .

[21]  Shikha,et al.  Hybrid function projective synchronization of chaotic systems via adaptive control , 2017 .

[22]  Ying Liu,et al.  Synchronization for a class of chaotic systems based on adaptive control design of input-to-state stability , 2015 .

[23]  Her-Terng Yau,et al.  Synchronization of unidirectional coupled chaotic systems with unknown channel time-delay: Adaptive robust observer-based approach , 2005 .

[24]  Stephen Lynch,et al.  Dynamical Systems with Applications using Mathematica , 2007 .

[25]  Marcel J. Sidi,et al.  Spacecraft Dynamics and Control: Contents , 1997 .