Simple approach to approximate quantum error correction based on the transpose channel

We demonstrate that there exists a universal, near-optimal recovery map—the transpose channel—for approximate quantum error-correcting codes, where optimality is defined using the worst-case fidelity. Using the transpose channel, we provide an alternative interpretation of the standard quantum error correction (QEC) conditions and generalize them to a set of conditions for approximate QEC (AQEC) codes. This forms the basis of a simple algorithm for finding AQEC codes. Our analytical approach is a departure from earlier work relying on exhaustive numerical search for the optimal recovery map, with optimality defined based on entanglement fidelity. For the practically useful case of codes encoding a single qubit of information, our algorithm is particularly easy to implement.

[1]  Laflamme,et al.  Perfect Quantum Error Correcting Code. , 1996, Physical review letters.

[2]  I. L. Chuang,et al.  Approximate quantum error correction can lead to better codes , 1997 .

[3]  A. Winter,et al.  Communications in Mathematical Physics Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality , 2022 .

[4]  Shinji Hara,et al.  Suboptimal quantum-error-correcting procedure based on semidefinite programming , 2005 .

[5]  Benjamin Schumacher,et al.  Approximate Quantum Error Correction , 2002, Quantum Inf. Process..

[6]  E. Knill,et al.  Reversing quantum dynamics with near-optimal quantum and classical fidelity , 2000, quant-ph/0004088.

[7]  Daniel A Lidar,et al.  Robust quantum error correction via convex optimization. , 2008, Physical review letters.

[8]  Ekert,et al.  Quantum Error Correction for Communication. , 1996 .

[9]  Moe Z. Win,et al.  Channel-Adapted Quantum Error Correction for the Amplitude Damping Channel , 2007, IEEE Transactions on Information Theory.

[10]  Cédric Bény,et al.  General conditions for approximate quantum error correction and near-optimal recovery channels. , 2009, Physical review letters.

[11]  D. Petz Monotonicity of quantum relative entropy revisited , 2002, quant-ph/0209053.

[12]  R. Klesse Approximate quantum error correction, random codes, and quantum channel capacity , 2007, quant-ph/0701102.

[13]  Moe Z. Win,et al.  Optimum quantum error recovery using semidefinite programming , 2007 .

[14]  David Poulin,et al.  Characterizing the structure of preserved information in quantum processes. , 2007, Physical review letters.

[15]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[16]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .

[17]  Robert L. Kosut,et al.  Quantum error correction via convex optimization , 2009, Quantum Inf. Process..

[18]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[19]  Moe Z. Win,et al.  Structured near-optimal channel-adapted quantum error correction , 2007, 0708.3658.

[20]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[22]  David Poulin,et al.  Operator quantum error correction , 2006, Quantum Inf. Comput..

[23]  Francesco Buscemi,et al.  Entanglement measures and approximate quantum error correction , 2007, 0706.1815.

[24]  R F Werner,et al.  Iterative optimization of quantum error correcting codes. , 2005, Physical review letters.