Hydraulic head field estimation using kriging with an external drift: A way to consider conceptual model information

This study presents an approach to hydraulic head mapping based on kriging with an external drift in which the auxiliary variables are obtained by finite-element modeling. The approach relies on the idea that numerical solutions stemming from simple conceptual models are suitable candidates for the hydraulic head field drift. Indeed, these numerical head fields obey the groundwater flow equations and incorporate information gathered during site investigations such as parameter estimates, geology and boundary conditions. The approach is tested on 2D and 3D synthetic case studies, and is then applied to a real case involving the mapping of hydraulic heads within two large earth dams. In each case, the hydraulic head maps are compared quantitatively and qualitatively to those obtained by ordinary kriging and universal kriging with first order polynomials. It is shown that kriging with an external drift can improve both the precision and realism of the mapped head fields.

[1]  J. R. Wallis,et al.  An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .

[2]  Giuseppe Gambolati,et al.  Groundwater contour mapping in Venice by stochastic interpolators: 1. Theory , 1979 .

[3]  Massimo Guarascio,et al.  Advanced geostatistics in the mining industry : proceedings of the NATO Advanced Study Institute held at the Istituto di Geologia Applicata of the University of Rome, Italy, 13-25 October 1975 , 1976 .

[4]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[5]  S. Leroueil,et al.  Hydraulic conductivity of compacted tills from northern Quebec , 2002 .

[6]  P. Delfiner,et al.  Linear Estimation of non Stationary Spatial Phenomena , 1976 .

[7]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[8]  Denis Marcotte,et al.  Trend surface analysis as a special case of IRF-k kriging , 1988 .

[9]  M. Aubertin,et al.  A simplified method to estimate saturated and unsaturated seepage through dikes under steady-state conditions , 2001 .

[10]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[11]  Including Conceptual Model Information when Kriging Hydraulic Heads , 2008 .

[12]  Denis Marcotte,et al.  A Simple Approach to Account for Radial Flow and Boundary Conditions When Kriging Hydraulic Head Fields for Confined Aquifers , 2003 .

[13]  Analyse géostatistique d'un noyau de barrage tel que construit , 1983 .

[14]  Hans Wackernagel,et al.  Multivariate Geostatistics: An Introduction with Applications , 1996 .

[15]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[16]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[17]  Miguel A. Mariño,et al.  Kriging of water levels in the Souss aquifer, Morocco , 1983 .

[18]  C Logan,et al.  On the kriging of water table elevations using collateral information from a digital elevation model , 2002 .

[19]  Eulogio Pardo-Igúzquiza,et al.  Bayesian Inference of Spatial Covariance Parameters , 1999 .

[20]  Philippe Pasquier,et al.  Steady- and transient-state inversion in hydrogeology by successive flux estimation , 2006 .

[21]  Dale L. Zimmerman,et al.  A comparison of spatial semivariogram estimators and corresponding ordinary Kriging predictors , 1991 .

[22]  Giansilvio Ponzini,et al.  Identification of aquifer transmissivities: The comparison model method , 1982 .

[23]  Sai K. Vanapalli,et al.  THE INFLUENCE OF SOIL STRUCTURE AND STRESS HISTORY ON THE SOIL-WATER CHARACTERISTICS OF A COMPACTED TILL , 1999 .

[24]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[25]  Denis Marcotte,et al.  Cokriging with matlab , 1991 .

[26]  Y. Watabe,et al.  Influence of compaction conditions on pore-size distribution and saturated hydraulic conductivity of a glacial till , 2000 .

[27]  M. Soulié,et al.  Geostatistical Applications in Geotechnics , 1984 .

[28]  Andres Alcolea,et al.  Inverse problem in hydrogeology , 2005 .

[29]  G. Marsily,et al.  Comparison of geostatistical methods for estimating transmissivity using data on transmissivity and specific capacity , 1987 .

[30]  J. Delhomme Kriging in the hydrosciences , 1978 .

[31]  P. Domenico,et al.  Physical and chemical hydrogeology , 1990 .

[32]  Matthew J Tonkin,et al.  Kriging Water Levels with a Regional‐Linear and Point‐Logarithmic Drift , 2002, Ground water.

[33]  Gravity Data Transformation by Kriging , 1993 .