Bicycles and left-right tours in locally finite graphs

We extend three results involving bicycles and left-right tours to infinite, locally finite graphs: Read and Rosenstiehl's tripartition theorem, Shank's theorem that the residues of left-right tours generate the bicycle space and the planarity criterion of Archdeacon, Bonnington and Little. In order to achieve this it is necessary to allow infinite cycles as defined by Diestel and Kuhn.

[1]  G. Dirac,et al.  A Theorem of Kuratowski , 1954 .

[2]  L. Lovász Combinatorial problems and exercises , 1979 .

[3]  Henning Bruhn,et al.  The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits , 2004, J. Comb. Theory, Ser. B.

[4]  Sóstenes Lins,et al.  The Gauss code problem off the plane , 1987 .

[5]  R. Richter,et al.  The bond and cycle spaces of an infinite graph , 2008 .

[6]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[7]  Reinhard Diestel,et al.  On Infinite Cycles II , 2004, Comb..

[8]  Saunders Mac Lane,et al.  A combinatorial condition for planar graphs , 1937 .

[9]  H. Jung,et al.  Wurzelbäume und unendliche Wege in Graphen , 1969 .

[10]  Henning Bruhn,et al.  Duality in Infinite Graphs , 2006, Combinatorics, Probability and Computing.

[11]  Wai-Kai Chen On Vector Spaces Associated with a Graph , 1971 .

[12]  Frank Harary,et al.  Graph Theory , 2016 .

[13]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[14]  Maya Jakobine Stein,et al.  On end degrees and infinite cycles in locally finite graphs , 2007, Comb..

[15]  Reinhard Diestel,et al.  On Infinite Cycles I , 2004, Comb..

[16]  Carsten Thomassen,et al.  3-connected planar spaces uniquely embed in the sphere , 2002 .

[17]  Henning Bruhn,et al.  Hamilton connectivity of line graphs and claw-free graphs , 2005 .

[18]  P. Rosenstiehl,et al.  On the Principal Edge Tripartition of a Graph , 1978 .

[19]  R. Bruce Richter,et al.  Walks through every edge exactly twice II , 1996, J. Graph Theory.

[20]  Karel Casteels The Cycle Spaces of an Infinite Graph , 2006 .

[21]  Reinhard Diestel,et al.  Topological paths, cycles and spanning trees in infinite graphs , 2004, Eur. J. Comb..

[22]  Maya Jakobine Stein,et al.  MacLane's planarity criterion for locally finite graphs , 2006, J. Comb. Theory, Ser. B.

[23]  Reinhard Diestel,et al.  The Cycle Space of an Infinite Graph , 2005, Combinatorics, Probability and Computing.

[24]  R. Bruce Richter,et al.  Circular chromatic index of type 1 Blanuša snarks , 2008 .

[25]  H. Shank,et al.  The theory of left-right paths , 1975 .

[26]  Charles H. C. Little,et al.  An algebraic characterization of planar graphs , 1995, J. Graph Theory.