Cytogenetic study of Anopheles albitarsis (Diptera: Culicidae) by C-banding and in situ hybridization.

The C-banding pattern and the size and location of the nucleolar organizer regions (NORs) are described for the first time in Brazilian populations of Anopheles (Nyssorhynchus) albitarsis sensu lato. C-banding revealed variation in the size of the centromeric heterochromatic blocks in autosomal chromosomes and in the acrocentric (X) and puntiform (Y) sex chromosomes. Fluorescence in situ hybridization showed that the NORs were located in the pericentromeric region of the sex (XX/XY) chromosomes and that this coincided with the number and location of centromeric constitutive heterochromatin blocks previously revealed by C-banding. The NORs varied in size among the homologues of the three populations. These findings of the populations studied support the hypothesis that the stability of NORs in the A. albitarsis complex is characterized by the presence of clustered and conserved sites in a unique pair of chromosomes.

[1]  V. Sharma,et al.  Karyotypic variations in Anopheles culicifacies complex. , 1982 .

[2]  J. Crampton,et al.  The ribosomal genes of the mosquito, Aedes aegypti. , 1989, European journal of biochemistry.

[3]  W. Tadei,et al.  Karyotype of Brazilian Anopheles albitarsis sensu lato (Diptera:Culicidae). , 2005, Genetics and molecular research : GMR.

[4]  W. Tadei,et al.  Metaphase karyotypes of Anopheles (Nyssorhynchus) darlingi Root and A. (N.) nuneztovari Gabaldón (Diptera; Culicidae) , 1998 .

[5]  V. Baimai,et al.  Intraspecific variation in sex heterochromatin of species B of the Anopheles dirus complex in Thailand. , 1987, Genome.

[6]  I. Boussy Recent Developments in the Genetics of Insect Disease Vectors , 1984 .

[7]  R. Kreutzer,et al.  Cytogenetically distinguishable sympatric and allopatric populations of the mosquito Anopheles albitarsis , 1976 .

[8]  S. Bonaccorsi,et al.  Intraspecific polymorphism of sex chromosome heterochromatin in two species of the Anopheles gambiae complex , 2004, Chromosoma.

[9]  W. Tadei,et al.  Location of ribosomal genes in the chromosomes of Anopheles darlingi and Anopheles nuneztovari (Diptera, Culicidae) from the Brazilian Amazon. , 2003, Memorias do Instituto Oswaldo Cruz.

[10]  A. T. Sumner A simple technique for demonstrating centromeric heterochromatin. , 1972, Experimental cell research.

[11]  C. Ramirez,et al.  Cytogenetic analysis of a natural population of anopheles cruzii , 1994 .

[12]  V. Baimai,et al.  Metaphase karyotypes of Anopheles of Thailand and Southeast Asia. II. Maculatus group, Neocellia series, subgenus Cellia , 1993 .

[13]  B. A. Harrison,et al.  Heterochromatin variation in the sex chromosomes in Thailand populations of Anopheles dirus A (Diptera: Culicidae) , 1984 .

[14]  M. Póvoa,et al.  Biting indices, host-seeking activity and natural infection rates of anopheline species in Boa Vista, Roraima, Brazil from 1996 to 1998. , 2002, Memorias do Instituto Oswaldo Cruz.

[15]  J. Conn,et al.  Systematics of mosquito disease vectors (Diptera, Culicidae): impact of molecular biology and cladistic analysis. , 1997, Annual review of entomology.

[16]  A. Marchi,et al.  Ribosomal RNA genes in mosquitoes: localization by fluorescence in situ hybridization (FISH) , 1994, Heredity.

[17]  P. N. Rao,et al.  Comparative Karyotypes and Chromosomal Evolution in Some Genera of Nematocerous (Diptera: Nematocera) Families , 1987 .

[18]  M. Póvoa,et al.  Malaria vectors in the municipality of Serra do Navio, State of Amapá, Amazon Region, Brazil. , 2001, Memorias do Instituto Oswaldo Cruz.

[19]  R. Crozier,et al.  Modes of spontaneous chromosomal mutation and karyotype evolution in ants with reference to the minimum interaction hypothesis. , 1988, Idengaku zasshi.

[20]  A. Kumar,et al.  Chromosomal localization and copy number of 18S + 28S ribosomal RNA genes in evolutionarily diverse mosquitoes (Diptera, Culicidae). , 2008, Hereditas.

[21]  M. Faran,et al.  A handbook of the Amazonian species of Anopheles(Nyssorhynchus) (Diptera: Culicidae) , 1981 .

[22]  V. Baimai,et al.  Heterochromatin variation in chromosome X in a natural population of Anopheles willmori (Diptera: Culicidae) of Thailand , 1996, Genetica.

[23]  C. Schlichting,et al.  Emergence of a new neotropical malaria vector facilitated by human migration and changes in land use. , 2002, The American journal of tropical medicine and hygiene.

[24]  M. Jamilena,et al.  Variation in the heterochromatin and nucleolar organizing regions of Allium subvillosum L. (Liliaceae) , 1990 .

[25]  A. Marchi,et al.  Inter- and intraspecific heterochromatin variation detected by restriction endonuclease digestion in two sibling species of the Anopheles maculipennis complex , 1990, Heredity.

[26]  W. Tadei,et al.  Malaria vectors in the Brazilian amazon: Anopheles of the subgenus Nyssorhynchus. , 2000, Revista do Instituto de Medicina Tropical de Sao Paulo.

[27]  W. Tadei,et al.  Heterochromatin variation in chromosomes of Anopheles (Nyssorhynchus) darlingi Root and A.(N.) nuneztovari Gabaldón (Diptera: Culicidae) , 2000 .

[28]  V. Baimai Heterochromatin Accumulation and Karyotypic Evolution in Some Dipteran Insects , 1998 .