MEMS deformable mirror CubeSat testbed

To meet the high contrast requirement of 1 × 10−10to image an Earth-like planet around a Sun-like star, space telescopes equipped with coronagraphs require wavefront control systems. Deformable mirrors are a key element of these systems that correct for optical imperfections, thermal distortions, and diffraction that would otherwise corrupt the wavefront and ruin the contrast. However, high-actuator-count MEMS deformable mirrors have yet to fly in space long enough to characterize their on-orbit performance and reduce risk by developing and operating their supporting systems. The goal of the MEMS Deformable Mirror CubeSat Testbed is to develop a CubeSat-scale demonstration of MEMS deformable mirror and wavefront sensing technology. In this paper, we consider two approaches for a MEMS deformable mirror technology demonstration payload that will fit within the mass, power, and volume constraints of a CubeSat: 1) a Michelson interferometer and 2) a Shack-Hartmann wavefront sensor. We clarify the constraints on the payload based on the resources required for supporting CubeSat subsystems drawn from subsystems that we have developed for a different CubeSat flight project. We discuss results from payload lab prototypes and their utility in defining mission requirements.

[1]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[2]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[3]  Li Yao,et al.  Novel hierarchically dimensioned deformable mirrors with integrated ASIC driver electronics , 2012, Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components.

[4]  D. Queloz,et al.  The HARPS search for southern extra-solar planets - VI. A Neptune-mass planet around the nearby M dwarf Gl 581 , 2005 .

[5]  Sara Seager,et al.  INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE , 2013, 1309.7894.

[6]  Robert Q. Fugate,et al.  The Adaptive Optics Revolution: A History , 2009 .

[7]  Karl R. Stapelfeldt,et al.  Extrasolar planets and star formation: science opportunities for future ELTs , 2005, Proceedings of the International Astronomical Union.

[8]  C. Cory,et al.  New Worlds , 1966, IEEE Spectrum.

[9]  Xiaoli Sun,et al.  Two-Way Laser Link over Interplanetary Distance , 2006, Science.

[10]  Christopher B. Mendillo,et al.  Flight Demonstration of a Milli-Arcsecond Optical Pointing System for Direct Exoplanet Imaging , 2012 .

[11]  W. Traub,et al.  A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets , 2002, astro-ph/0203455.

[12]  David M. Shemo,et al.  THE VECTOR VORTEX CORONAGRAPH: LABORATORY RESULTS AND FIRST LIGHT AT PALOMAR OBSERVATORY , 2009, 0912.2287.

[13]  D. Mawet,et al.  An image of an exoplanet separated by two diffraction beamwidths from a star , 2010, Nature.

[14]  Robert J. Vanderbei,et al.  External occulters for direct observation of exoplanets: an overview , 2007, SPIE Optical Engineering + Applications.

[15]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[16]  R. Vanderbei,et al.  Extrasolar Planet Finding via Optimal Apodized-Pupil and Shaped-Pupil Coronagraphs , 2003 .

[17]  W. A. Traub,et al.  Spectral Evolution of an Earth-like Planet , 2006 .

[18]  D. Defrère,et al.  Direct imaging of exoEarths embedded in clumpy debris disks , 2012, Other Conferences.

[19]  James Cutler,et al.  The attitude determination system of the RAX satellite , 2012 .

[20]  W. Traub,et al.  Atmospheric characterization of cold exoplanets using a 1.5-m coronagraphic space telescope , 2012, 1203.2826.

[21]  Russell B. Makidon,et al.  The Structure of High Strehl Ratio Point-Spread Functions , 2003 .

[22]  Jean-Marc Conan,et al.  On the optimal reconstruction and control of adaptive optical systems with mirror dynamics. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[23]  Supriya Chakrabarti,et al.  Flight demonstration of a milliarcsecond pointing system for direct exoplanet imaging. , 2012, Applied optics.

[24]  Herbert Shea Reliability of MEMS for space applications , 2006, SPIE MOEMS-MEMS.

[25]  Jie Li,et al.  Kepler-22b: A 2.4 EARTH-RADIUS PLANET IN THE HABITABLE ZONE OF A SUN-LIKE STAR , 2011, The Astrophysical Journal.

[26]  W. Demtröder Laser Spectroscopy: Basic Concepts and Instrumentation , 1996 .

[27]  J. E. Kim,et al.  A New Type of Space Telescope for Observation of Extreme Lightning Phenomena in the Upper Atmosphere , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[28]  Sara Seager,et al.  THEORETICAL SPECTRA OF TERRESTRIAL EXOPLANET SURFACES , 2012, 1204.1544.

[29]  Sara Seager,et al.  ATMOSPHERIC RETRIEVAL FOR SUPER-EARTHS: UNIQUELY CONSTRAINING THE ATMOSPHERIC COMPOSITION WITH TRANSMISSION SPECTROSCOPY , 2012, 1203.4018.

[30]  Olivier Guyon,et al.  Science performance of the Pupil-mapping Exoplanet Coronagraphic Observer (PECO) , 2009, Optical Engineering + Applications.

[31]  G. Johnson,et al.  Springer Handbook of Lasers and Optics , 2008 .

[32]  Robert K. Tyson Principles of Adaptive Optics , 1991 .

[33]  Raymond N. Smartt,et al.  Point-Diffraction Interferometer , 1974 .

[34]  D. Sasselov,et al.  THE ATMOSPHERIC SIGNATURES OF SUPER-EARTHS: HOW TO DISTINGUISH BETWEEN HYDROGEN-RICH AND HYDROGEN-POOR ATMOSPHERES , 2008, 0808.1902.

[35]  F. Träger Springer Handbook of Lasers and Optics , 2007 .

[36]  R. P. Butler,et al.  Signals embedded in the radial velocity noise - Periodic variations in the τ Ceti velocities , 2012, 1212.4277.

[37]  K. Cahoy,et al.  EXOPLANET ALBEDO SPECTRA AND COLORS AS A FUNCTION OF PLANET PHASE, SEPARATION, AND METALLICITY , 2010, 1009.3071.

[38]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[39]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[40]  Sara Seager,et al.  Achieving high-precision pointing on ExoplanetSat: initial feasibility analysis , 2010, Astronomical Telescopes + Instrumentation.

[41]  M. Osorio,et al.  Earth’s transmission spectrum from lunar eclipse observations , 2009, Nature.

[42]  Ben R. Oppenheimer,et al.  High-Contrast Observations in Optical and Infrared Astronomy , 2009 .

[43]  Bruce A. Macintosh,et al.  Speckle Decorrelation and Dynamic Range in Speckle Noise-limited Imaging , 2002 .

[44]  Alain Lecavelier des Etangs,et al.  THE DEEP BLUE COLOR OF HD189733b: ALBEDO MEASUREMENTS WITH HST/STIS AT VISIBLE WAVELENGTHS , 2013 .

[45]  D. Frail,et al.  A planetary system around the millisecond pulsar PSR1257 + 12 , 1992, Nature.

[46]  M. Jhabvala,et al.  Programmable microshutter arrays for the JWST NIRSpec: optical performance , 2004, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  J. Angel,et al.  Ground-based imaging of extrasolar planets using adaptive optics , 1994, Nature.

[48]  Mark R. Swain,et al.  Spectroscopy of exoplanet atmospheres with the FINESSE Explorer mission , 2012, Other Conferences.

[49]  Jordi Puig-Suari,et al.  CubeSat: The Development and Launch Support Infrastructure for Eighteen Different Satellite Customers on One Launch , 2001 .

[50]  Frantz Martinache,et al.  The Asymmetric Pupil Fourier Wavefront Sensor , 2013, 1303.6678.

[51]  Gopal Vasudevan,et al.  Visible Nulling Coronagraphy for Exo-Planetary Detection and Characterization , 2005, Proceedings of the International Astronomical Union.

[52]  David G. Voelz,et al.  Laser satellite communications with adaptive optics , 2005, SPIE Optics + Photonics.

[53]  Olivier Guyon,et al.  Detecting and characterizing exoplanets with a 1.4-m space telescope: the Pupil mapping Exoplanet Coronagraphic Observer (PECO) , 2009, Optical Engineering + Applications.

[54]  Sara Seager,et al.  ExoplanetSat: detecting transiting exoplanets using a low-cost CubeSat platform , 2010, Astronomical Telescopes + Instrumentation.