New bounds for the Descartes method

We give a new bound for the number of recursive subdivisions in the Descartes method for polynomial real root isolation. Our proof uses Ostrowski's theory of normal power series from 1950 which has so far been overlooked in the literature. We combine Ostrowski's results with a theorem of Davenport from 1985 to obtain our bound. We also characterize normality of cubic polynomials by explicit conditions on their roots and derive a generalization of one of Ostrowski's theorems.

[1]  C. F. Gauss,et al.  Beweis eines algebraischen Lehrsatzes. , 1828 .

[2]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[3]  Margherita Bartolozzi,et al.  La regola dei segni dall'enunciato di R. Descartes (1637) alla dimostrazione di C. F. Gauss (1828) , 1993 .

[4]  James W. Anderson,et al.  Hyperbolic geometry , 1999 .

[5]  R. Riesenfeld,et al.  Bounds on a polynomial , 1981 .

[6]  Werner Krandick,et al.  Compiler-Enforced Memory Semantics in the SACLIB Computer Algebra Library , 2005, CASC.

[7]  A. Ostrowski,et al.  Note sur les produits de séries normales , 1984 .

[8]  George E. Collins,et al.  Quantifier elimination and the sign variation method for real root isolation , 1989, ISSAC '89.

[9]  Alexander Ostrowski On an Inequality of J. Vicente Gonçalves , 1983 .

[10]  George E. Collins The Computing Time of the Euclidean Algorithm , 1974, SIAM J. Comput..

[11]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[12]  N. B. Conkwright,et al.  Introduction to the theory of equations , 1941 .

[13]  E. Landau,et al.  Sur quelques théorèmes de M. Petrovitch relatifs aux zéros des fonctions analytiques , 1905 .

[14]  M. Mignotte An inequality about factors of polynomials , 1974 .

[15]  G. E. Collins,et al.  Real Zeros of Polynomials , 1983 .

[16]  L. Zoretti Sur la résolution des équations numériques , 1909 .

[17]  Werner Krandick,et al.  On the Isoefficiency of the Parallel Descartes Method , 2001, Symbolic Algebraic Methods and Verification Methods.

[18]  M. Mignotte Some Useful Bounds , 1983 .

[19]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[20]  A. Ostrowski Note on Vincent's Theorem , 1950 .

[21]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[22]  K. Mahler An inequality for the discriminant of a polynomial. , 1964 .

[23]  A. Albert An Inductive Proof of Descartes' Rule of Signs , 1943 .

[24]  T. A. Brown,et al.  Theory of Equations. , 1950, The Mathematical Gazette.

[25]  George E. Collins,et al.  Interval Arithmetic in Cylindrical Algebraic Decomposition , 2002, J. Symb. Comput..

[26]  B. F. Caviness,et al.  Quantifier Elimination and Cylindrical Algebraic Decomposition , 2004, Texts and Monographs in Symbolic Computation.

[27]  Bruno Buchberger,et al.  Computer algebra symbolic and algebraic computation , 1982, SIGS.

[28]  Camille Jordan Mémoire sur la résolution algébrique des équations. , 1867 .

[29]  D. R. Heath-Brown Edmund Landau: Collected Works , 1989 .

[30]  Jeremy Johnson,et al.  Algorithms for polynomial real root isolation , 1992 .

[31]  Jeremy R. Johnson,et al.  Polynomial real root isolation using approximate arithmetic , 1997, ISSAC.

[32]  Thomas Decker,et al.  Parallel Real Root Isolation Using the Descartes Method , 1999, HiPC.

[33]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[34]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[35]  Xiaoshen Wang,et al.  A Simple Proof of Descartes's Rule of Signs , 2004, Am. Math. Mon..