3D structure and motion recovery in a multisensor framework

Abstract The aim of this article is to develop a multisensor estimation method to identify the 3D structure and motion of an object. The method lies in the feature description of the object and the solution uses an extended Kalman filter (EKF) which fuses information from each sensor. The filter tracks the features through the data sequences and estimates the 3D position and affines motion parameters. The originality of this work relies on a 3D modelling of this problem to jointly estimate the 3D structure and motion. This estimation is made possible by the use of an active sensor (range camera).

[1]  Radu Horaud,et al.  New Methods for Matching 3-D Objects with Single Perspective Views , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Anup Basu,et al.  Texture, contour, shape, and motion , 1987, Pattern Recognit. Lett..

[3]  O. Faugeras Three-dimensional computer vision: a geometric viewpoint , 1993 .

[4]  Kenichi Kanatani,et al.  Shape from Texture: General Principle , 1989, Artif. Intell..

[5]  Yaakov Bar-Shalom,et al.  Estimation and Tracking: Principles, Techniques, and Software , 1993 .

[6]  K. Storjohann Laser range camera modeling , 1990 .

[7]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Jake K. Aggarwal,et al.  Structure from stereo-a review , 1989, IEEE Trans. Syst. Man Cybern..

[9]  Gabriela Csurka,et al.  Modelisation projective des objets tridimensionnels en vision par ordinateur , 1996 .

[10]  Yaakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking , 1995 .

[11]  Ingemar J. Cox,et al.  An Efficient Implementation of Reid's Multiple Hypothesis Tracking Algorithm and Its Evaluation for the Purpose of Visual Tracking , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Patrick Rives,et al.  Closed-loop recursive estimation of 3D features for a mobile vision system , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[13]  Christophe Boucher,et al.  3D structure and motion recovery by fusing range and intensity image sequences , 2000, Proceedings of the Third International Conference on Information Fusion.

[14]  P. Beardsley,et al.  Affine and Projective Structure from Motion , 1992 .

[15]  John W. Woods,et al.  3-D Kalman filter for image motion estimation , 1998, IEEE Trans. Image Process..

[16]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  José M. F. Moura,et al.  A fast algorithm for rigid structure from image sequences , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[18]  Olivier D. Faugeras,et al.  Determining motion from 3D line segment matches: a comparative study , 1991, Image Vis. Comput..

[19]  P. Rives,et al.  7 - Estimation récursive de primitives 3D au moyen d'une caméra mobile , 1987 .

[20]  R. Y. Tsai,et al.  An Efficient and Accurate Camera Calibration Technique for 3D Machine Vision , 1986, CVPR 1986.

[21]  Rachid Deriche,et al.  Recursive filtering and edge tracking: two primary tools for 3D edge detection , 1991, Image Vis. Comput..

[22]  David D. Sworder,et al.  Image fusion for tracking manoeuvring targets , 1997, Int. J. Syst. Sci..

[23]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[24]  Jonas Gårding,et al.  Direct Estimation of Shape from Texture , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Ravi N. Banavar,et al.  Risk-Sensitive Filters for Recursive Estimation of Motion From Images , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  M. Benjelloun,et al.  3D structure and motion estimation using range and intensity images , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[27]  Rachid Deriche,et al.  Tracking line segments , 1990, Image Vis. Comput..

[28]  Yiannis Aloimonos,et al.  On the Geometry of Visual Correspondence , 1997, International Journal of Computer Vision.

[29]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[30]  Larry S. Shapiro,et al.  Affine Analysis of Image Sequences: Contents , 1995 .

[31]  Marc Rioux,et al.  Development of a real-time laser scanning system for object recognition, inspection, and robot control , 1993, Other Conferences.

[32]  Rachid Deriche,et al.  Using Canny's criteria to derive a recursively implemented optimal edge detector , 1987, International Journal of Computer Vision.

[33]  Thomas S. Huang,et al.  Motion and structure from feature correspondences: a review , 1994, Proc. IEEE.