Limit theorems for the sample entropy of hidden Markov chains

The Shannon-McMillan-Breiman theorem asserts that the sample entropy of a stationary and ergodic stochastic process converges to the entropy rate of the same process (as the sample size tends to infinity) almost surely. In this paper, we restrict our attention to the convergence behavior of the sample entropy of hidden Markov chains. Under certain positivity assumptions, we prove that a central limit theorem (CLT) with some Berry-Esseen bound for the sample entropy of a hidden Markov chain, and we use this CLT to establish a law of iterated logarithm (LIL) for the sample entropy.

[1]  A. C. Berry The accuracy of the Gaussian approximation to the sum of independent variates , 1941 .

[2]  Paul H. Siegel,et al.  On the capacity of finite state channels and the analysis of convolutional accumulate-m codes , 2003 .

[3]  Henry D. Pfister,et al.  The Capacity of Finite-State Channels in the High-Noise Regime , 2010, ArXiv.

[4]  Richard C. Bradley,et al.  Introduction to strong mixing conditions , 2007 .

[5]  P. Billingsley,et al.  Probability and Measure , 1980 .

[6]  Vladimir B. Balakirsky,et al.  On the entropy rate of a hidden Markov model , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[7]  Andrea J. Goldsmith,et al.  Capacity of Finite State Channels Based on Lyapunov Exponents of Random Matrices , 2006, IEEE Transactions on Information Theory.

[8]  Eytan Domany,et al.  The Entropy of a Binary Hidden Markov Process , 2005, ArXiv.

[9]  John J. Birch Approximations for the Entropy for Functions of Markov Chains , 1962 .

[10]  Philippe Jacquet,et al.  Noisy Constrained Capacity , 2007, 2007 IEEE International Symposium on Information Theory.

[11]  Brian H. Marcus,et al.  Analyticity of Entropy Rate of Hidden Markov Chains , 2005, IEEE Transactions on Information Theory.

[12]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[13]  M. Loève On Almost Sure Convergence , 1951 .

[14]  Hans-Andrea Loeliger,et al.  A Generalization of the Blahut–Arimoto Algorithm to Finite-State Channels , 2008, IEEE Transactions on Information Theory.

[15]  Hans-Andrea Loeliger,et al.  On the information rate of binary-input channels with memory , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[16]  Brian H. Marcus,et al.  Derivatives of Entropy Rate in Special Families of Hidden Markov Chains , 2007, IEEE Transactions on Information Theory.

[17]  Brian H. Marcus,et al.  Asymptotics of Entropy Rate in Special Families of Hidden Markov Chains , 2010, IEEE Transactions on Information Theory.

[18]  S. Bernstein Sur l'extension du théoréme limite du calcul des probabilités aux sommes de quantités dépendantes , 1927 .

[19]  R. C. Bradley Basic Properties of Strong Mixing Conditions , 1985 .

[20]  L. Arnold,et al.  Evolutionary Formalism for Products of Positive Random Matrices , 1994 .

[21]  Brian H. Marcus,et al.  Concavity of mutual information rate for input-restricted finite-state memoryless channels at high SNR , 2009, 2009 IEEE International Symposium on Information Theory.

[22]  Neri Merhav,et al.  Hidden Markov processes , 2002, IEEE Trans. Inf. Theory.

[23]  Zhengyan Lin,et al.  Limit Theory for Mixing Dependent Random Variables , 1997 .

[24]  R. C. Bradley Basic properties of strong mixing conditions. A survey and some open questions , 2005, math/0511078.

[25]  Philippe Jacquet,et al.  On the entropy of a hidden Markov process , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[26]  Eytan Domany,et al.  Taylor series expansions for the entropy rate of Hidden Markov Processes , 2005, 2006 IEEE International Conference on Communications.

[27]  Venkat Anantharam,et al.  An upper bound for the largest Lyapunov exponent of a Markovian product of nonnegative matrices , 2005, Theor. Comput. Sci..

[28]  Tsachy Weissman,et al.  Asymptotic filtering and entropy rate of a hidden Markov process in the rare transitions regime , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[29]  P. Lezaud Chernoff-type bound for finite Markov chains , 1998 .

[30]  Paul H. Siegel,et al.  On the achievable information rates of finite state ISI channels , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[31]  V. Sharma,et al.  Entropy and channel capacity in the regenerative setup with applications to Markov channels , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[32]  Yuval Peres,et al.  Entropy Rate for Hidden Markov Chains with rare transitions , 2010, ArXiv.

[33]  Tsachy Weissman,et al.  On the optimality of symbol-by-symbol filtering and denoising , 2004, IEEE Transactions on Information Theory.

[34]  Tsachy Weissman,et al.  New bounds on the entropy rate of hidden Markov processes , 2004, Information Theory Workshop.

[35]  Jun Luo,et al.  On the Entropy Rate of Hidden Markov Processes Observed Through Arbitrary Memoryless Channels , 2009, IEEE Transactions on Information Theory.

[36]  Wei Zeng,et al.  Simulation-Based Computation of Information Rates for Channels With Memory , 2006, IEEE Transactions on Information Theory.

[37]  Brian H. Marcus,et al.  Asymptotics of Input-Constrained Binary Symmetric Channel Capacity , 2008, ArXiv.