Subthreshold Sodium Current from Rapidly Inactivating Sodium Channels Drives Spontaneous Firing of Tuberomammillary Neurons

[1]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[2]  M. Steriade Impact of network activities on neuronal properties in corticothalamic systems. , 2001, Journal of neurophysiology.

[3]  S. H. Chandler,et al.  Membrane Resonance and Subthreshold Membrane Oscillations in Mesencephalic V Neurons: Participants in Burst Generation , 2001, The Journal of Neuroscience.

[4]  H. Haas,et al.  The physiology of brain histamine , 2001, Progress in Neurobiology.

[5]  D. Surmeier,et al.  D1/D5 Dopamine Receptor Activation Differentially Modulates Rapidly Inactivating and Persistent Sodium Currents in Prefrontal Cortex Pyramidal Neurons , 2001, The Journal of Neuroscience.

[6]  I. Raman,et al.  Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. , 2001, Biophysical journal.

[7]  William Wisden,et al.  Adaptive regulation of neuronal excitability by a voltage- independent potassium conductance , 2001, Nature.

[8]  A. Alonso,et al.  Persistent sodium channel activity mediates subthreshold membrane potential oscillations and low-threshold spikes in rat entorhinal cortex layer V neurons , 2001, Neuroscience.

[9]  Daniel Padgett,et al.  Ionic Currents and Spontaneous Firing in Neurons Isolated from the Cerebellar Nuclei , 2000, The Journal of Neuroscience.

[10]  Charles J. Wilson,et al.  Intrinsic Membrane Properties Underlying Spontaneous Tonic Firing in Neostriatal Cholinergic Interneurons , 2000, The Journal of Neuroscience.

[11]  D. McCormick,et al.  Ionic Mechanisms Underlying Repetitive High-Frequency Burst Firing in Supragranular Cortical Neurons , 2000, The Journal of Neuroscience.

[12]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[13]  W. Catterall,et al.  From Ionic Currents to Molecular Mechanisms The Structure and Function of Voltage-Gated Sodium Channels , 2000, Neuron.

[14]  B. Robertson,et al.  A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[15]  M. Madeja,et al.  Do neurons have a reserve of sodium channels for the generation of action potentials? A study on acutely isolated CA1 neurons from the guinea‐pig hippocampus , 2000, The European journal of neuroscience.

[16]  A. Alonso,et al.  Biophysical Properties and Slow Voltage-Dependent Inactivation of a Sustained Sodium Current in Entorhinal Cortex Layer-II Principal Neurons , 1999, The Journal of general physiology.

[17]  P. Gage,et al.  Nitric oxide increases persistent sodium current in rat hippocampal neurons , 1999, The Journal of physiology.

[18]  C. Wilson,et al.  Mechanisms Underlying Spontaneous Oscillation and Rhythmic Firing in Rat Subthalamic Neurons , 1999, The Journal of Neuroscience.

[19]  A. Alonso,et al.  High Conductance Sustained Single-Channel Activity Responsible for the Low-Threshold Persistent Na+ Current in Entorhinal Cortex Neurons , 1999, The Journal of Neuroscience.

[20]  J. C. Smith,et al.  Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. , 1999, Journal of neurophysiology.

[21]  A. Alonso,et al.  Slow Voltage‐Dependent Inactivation of a Sustained Sodium Current in Stellate Cells of Rat Entorhinal Cortex Layer II , 1999, Annals of the New York Academy of Sciences.

[22]  Bruce P. Bean,et al.  Ionic Currents Underlying Spontaneous Action Potentials in Isolated Cerebellar Purkinje Neurons , 1999, The Journal of Neuroscience.

[23]  W. Catterall,et al.  Block of Brain Sodium Channels by Peptide Mimetics of the Isoleucine, Phenylalanine, and Methionine (IFM) Motif from the Inactivation Gate , 1999, The Journal of general physiology.

[24]  Francisco Bezanilla,et al.  Voltage Sensors in Domains III and IV, but Not I and II, Are Immobilized by Na+ Channel Fast Inactivation , 1999, Neuron.

[25]  R Llinás,et al.  Kinetic and stochastic properties of a persistent sodium current in mature guinea pig cerebellar Purkinje cells. , 1998, Journal of neurophysiology.

[26]  Nicholas W. Plummer,et al.  Functional Analysis of the Mouse Scn8a Sodium Channel , 1998, The Journal of Neuroscience.

[27]  P. Gage,et al.  Inhibition of oxidative metabolism increases persistent sodium current in rat CA1 hippocampal neurons , 1998, The Journal of physiology.

[28]  V Taglietti,et al.  Ionic mechanism of electroresponsiveness in cerebellar granule cells implicates the action of a persistent sodium current. , 1998, Journal of neurophysiology.

[29]  E Wanke,et al.  Modalities of distortion of physiological voltage signals by patch-clamp amplifiers: a modeling study. , 1998, Biophysical journal.

[30]  H R Parri,et al.  Sodium Current in Rat and Cat Thalamocortical Neurons: Role of a Non-Inactivating Component in Tonic and Burst Firing , 1998, The Journal of Neuroscience.

[31]  Antonio Zaza,et al.  Ionic currents during sustained pacemaker activity in rabbit sino‐atrial myocytes , 1997, The Journal of physiology.

[32]  P. Thier,et al.  Electrophysiological properties of rat pontine nuclei neurons In vitro. I. Membrane potentials and firing patterns. , 1997, Journal of neurophysiology.

[33]  A. Alonso,et al.  Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro , 1997, Neuroscience.

[34]  C. Pennartz,et al.  Cellular mechanisms underlying spontaneous firing in rat suprachiasmatic nucleus: involvement of a slowly inactivating component of sodium current. , 1997, Journal of neurophysiology.

[35]  I. Raman,et al.  Altered Subthreshold Sodium Currents and Disrupted Firing Patterns in Purkinje Neurons of Scn8a Mutant Mice , 1997, Neuron.

[36]  I. Raman,et al.  Resurgent Sodium Current and Action Potential Formation in Dissociated Cerebellar Purkinje Neurons , 1997, The Journal of Neuroscience.

[37]  K. Takakusaki,et al.  Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat , 1997, Neuroscience.

[38]  E. Guatteo,et al.  Action potentials recorded with patch-clamp amplifiers: are they genuine? , 1996, Trends in Neurosciences.

[39]  M. Gutnick,et al.  Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. , 1996, Journal of neurophysiology.

[40]  F. Conti,et al.  Use dependence of tetrodotoxin block of sodium channels: a revival of the trapped-ion mechanism. , 1996, Biophysical journal.

[41]  R. Miura,et al.  Models of subthreshold membrane resonance in neocortical neurons. , 1996, Journal of neurophysiology.

[42]  B. Hutcheon,et al.  Subthreshold membrane resonance in neocortical neurons. , 1996, Journal of neurophysiology.

[43]  H. Haas,et al.  Calcium‐dependent prepotentials contribute to spontaneous activity in rat tuberomammillary neurons. , 1996, The Journal of physiology.

[44]  M. Gutnick,et al.  Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea‐pig neocortical neurones in slices. , 1996, The Journal of physiology.

[45]  V. Doze,et al.  Excitatory actions of norepinephrine on multiple classes of hippocampal CA1 interneurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  H. Haas,et al.  A persistent sodium current in acutely isolated histaminergic neurons from rat hypothalamus , 1995, Neuroscience.

[47]  P. Schwindt,et al.  Different voltage dependence of transient and persistent Na+ currents is compatible with modal-gating hypothesis for sodium channels. , 1994, Journal of neurophysiology.

[48]  Chung-Chin Kuo,et al.  Na+ channels must deactivate to recover from inactivation , 1994, Neuron.

[49]  G G Haddad,et al.  Functional properties of rat and human neocortical voltage-sensitive sodium currents. , 1994, Journal of neurophysiology.

[50]  N. Akaike,et al.  ATP-induced inward current in neurons freshly dissociated from the tuberomammillary nucleus. , 1994, Journal of neurophysiology.

[51]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[52]  R. C. Huang Sodium and calcium currents in acutely dissociated neurons from rat suprachiasmatic nucleus. , 1993, Journal of neurophysiology.

[53]  P. Schwindt,et al.  Modal gating of Na+ channels as a mechanism of persistent Na+ current in pyramidal neurons from rat and cat sensorimotor cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  A L Goldin,et al.  A cluster of hydrophobic amino acid residues required for fast Na(+)-channel inactivation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[55]  R. Llinás,et al.  Electrophysiology of the mammillary complex in vitro. I. Tuberomammillary and lateral mammillary neurons. , 1992, Journal of neurophysiology.

[56]  P. Reiner,et al.  Hyperpolarization-activated inward current in histaminergic tuberomammillary neurons of the rat hypothalamus. , 1991, Journal of neurophysiology.

[57]  A. L. Goldin,et al.  A voltage-dependent gating transition induces use-dependent block by tetrodotoxin o rat IIA sodium channels expressed in xenopus oocytes , 1991, Neuron.

[58]  N. Inagaki,et al.  Is the histaminergic neuron system a regulatory center for whole-brain activity? , 1991, Trends in Neurosciences.

[59]  D. McCormick,et al.  Properties of a hyperpolarization‐activated cation current and its role in rhythmic oscillation in thalamic relay neurones. , 1990, The Journal of physiology.

[60]  K. Buckett,et al.  A voltage-dependent persistent sodium current in mammalian hippocampal neurons , 1990, The Journal of general physiology.

[61]  W. Trautwein,et al.  Calcium currents in single SA nodal cells of the rabbit heart studied with action potential clamp , 1989, Pflügers Archiv - European Journal of Physiology.

[62]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[63]  H. Haas,et al.  Membrane properties of histaminergic tuberomammillary neurones of the rat hypothalamus in vitro. , 1988, The Journal of physiology.

[64]  Peter B. Reiner,et al.  Electrophysiological properties of cortically projecting histamine neurons of the rat hypothalamus , 1987, Neuroscience Letters.

[65]  H. Wada,et al.  Adenosine deaminase and histidine decarboxylase coexist in certain neurons of the rat brain , 1986, Neuroscience Letters.

[66]  R. Tsien,et al.  Maximal Upstroke Velocity as an Index of Available Sodium Conductance: Comparison of Maximal Upstroke Velocity and Voltage Clamp Measurements of Sodium Current in Rabbit Purkinje Fibers , 1984, Circulation research.

[67]  C. F. Stevens,et al.  A reinterpretation of mammalian sodium channel gating based on single channel recording , 1983, Nature.

[68]  P. Schwindt,et al.  Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro , 1982, Brain Research.

[69]  R. Llinás,et al.  Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. , 1980, The Journal of physiology.

[70]  D. Prince,et al.  Anomalous inward rectification in hippocampal neurons. , 1979, Journal of neurophysiology.

[71]  F Bezanilla,et al.  Inactivation of the sodium channel. I. Sodium current experiments , 1977, The Journal of general physiology.

[72]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[73]  W. Crill,et al.  Persistent sodium current in mammalian central neurons. , 1996, Annual review of physiology.

[74]  H. Pape,et al.  Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. , 1996, Annual review of physiology.

[75]  D DiFrancesco,et al.  Pacemaker mechanisms in cardiac tissue. , 1993, Annual review of physiology.

[76]  E. Neher Correction for liquid junction potentials in patch clamp experiments. , 1992, Methods in enzymology.

[77]  Bertil Hille Ion Channels of Excitable Membranes , Third Edition , 2022 .