Determination of Λ M S at Five Loops from Holographic QCD

The recent determination of the β –function of the QCD running coupling α MS ( Q 2 ) to 5-loops, provides a verification of the convergence of a novel method for determining the fundamental QCD parameter Λ s based on the Light-Front Holographic approach to nonperturbative QCD. The new 5-loop analysis, together with improvements in determining the holographic QCD nonperturbative scale parameter κ from hadronic spectroscopy, leads to an improved precision of the value of Λ s in the MS scheme close to a factor of two; we find Λ (3) MS = 0 . 339 ± 0 . 019 GeV for n f = 3, in excellent agreement with the world average, Λ (3) MS = 0 . 332 ± 0 . 017 GeV. We also discuss the constraints imposed on the scale dependence of the strong coupling in the nonperturbative domain by superconformal quantum mechanics and its holographic embedding in anti-de Sitter space.

[1]  R. Hanel,et al.  Scaling , 2018, Oxford Scholarship Online.

[2]  K. Chetyrkin,et al.  Bjorken Sum Rule , and the Crewther Relation to Order α 4 s in a General Gauge Theory , 2018 .

[3]  S. Brodsky,et al.  Analysis of nucleon electromagnetic form factors from light-front holographic QCD : The spacelike region , 2016, 1609.06688.

[4]  K. Chetyrkin,et al.  Five-Loop Running of the QCD Coupling Constant. , 2016, Physical review letters.

[5]  A. Maier,et al.  Towards the five-loop Beta function for a general gauge group , 2016, 1606.08662.

[6]  S. Brodsky,et al.  The QCD running coupling , 2016, 1604.08082.

[7]  S. Brodsky,et al.  Universal effective hadron dynamics from superconformal algebra , 2016, 1604.06746.

[8]  S. Brodsky,et al.  On the interface between perturbative and nonperturbative QCD , 2016, 1601.06568.

[9]  S. Brodsky,et al.  Superconformal baryon-meson symmetry and light-front holographic QCD , 2015, 1501.00959.

[10]  S. Brodsky,et al.  Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding , 2014, 1411.5243.

[11]  S. Brodsky,et al.  Connecting the Hadron Mass Scale to the Fundamental Mass Scale of Quantum Chromodynamics , 2014, 1409.5488.

[12]  S. Brodsky,et al.  Light-front holographic QCD and emerging confinement , 2014, 1407.8131.

[13]  N. Guler,et al.  High precision determination of the Q 2 evolution of the Bjorken sum , 2014, 1405.7854.

[14]  S. Brodsky,et al.  Effective confining potentials for QCD , 2014, 1403.5651.

[15]  S. Brodsky,et al.  Systematic Scale-Setting to All Orders: The Principle of Maximum Conformality and Commensurate Scale Relations , 2013, 1304.4631.

[16]  S. Brodsky,et al.  Threefold Complementary Approach to Holographic QCD , 2013, 1302.4105.

[17]  S. Brodsky,et al.  Basis light-front quantization: A new approach to non-perturbative scattering and time-dependent production processes , 2013 .

[18]  S. Brodsky,et al.  Kinematical and Dynamical Aspects of Higher-Spin Bound-State Equations in Holographic QCD , 2013, 1301.1651.

[19]  S. Brodsky,et al.  Systematic all-orders method to eliminate renormalization-scale and scheme ambiguities in perturbative QCD. , 2012, Physical review letters.

[20]  P. Cai,et al.  Reliable Perturbative Results for Strong Interactions ? , 2011 .

[21]  S. Brodsky,et al.  Nonperturbative QCD coupling and its β function from light-front holography , 2010, 1002.3948.

[22]  S. Brodsky,et al.  Light-front holography: a first approximation to QCD. , 2008, Physical review letters.

[23]  V. Burkert,et al.  Determination of the effective strong coupling constant αs,g1(Q2) from CLAS spin structure function data , 2008, 0803.4119.

[24]  V. Burkert,et al.  Experimental study of isovector spin sum rules , 2008, 0802.3198.

[25]  C. Simolo,et al.  On the running coupling constant in QCD , 2006, hep-ph/0607209.

[26]  J. P. Chen,et al.  Experimental determination of the effective strong coupling constant , 2005, hep-ph/0509113.

[27]  S. Brodsky,et al.  Hadronic spectra and light-front wave functions in holographic QCD. , 2006, Physical review letters.

[28]  B. Kniehl,et al.  Strong-coupling constant with flavor thresholds at five loops in the modified minimal-subtraction scheme. , 1997, Physical review letters.

[29]  A. Kataev Deep Inelastic Sum Rules at the Boundaries Between Perturbative and Nonperturbative QCD , 2005, hep-ph/0505230.

[30]  E. Hughes,et al.  Experimental determination of the evolution of the Bjorken integral at low Q2. , 2004, Physical review letters.

[31]  B. Bakker Forms of Relativistic Dynamics , 2001 .

[32]  S. Pinsky,et al.  Quantum chromodynamics and other field theories on the light cone , 1997, hep-ph/9705477.

[33]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[34]  H. Lu,et al.  The generalized Crewther relation in QCD and its experimental consequences: The preliminary consideration , 1995, hep-ph/9512367.

[35]  E. Rabinovici,et al.  Superconformal quantum mechanics , 1984 .

[36]  A. Pashnev,et al.  Quantum superconformal model in (1, 2) space , 1983 .

[37]  H. Leutwyler,et al.  Relativistic dynamics on a null plane , 1978 .

[38]  H. Leutwyler,et al.  Covariant interactions of two spinless particles: all local solutions of the angular condition , 1978 .

[39]  H. Leutwyler,et al.  Harmonic confinement: A fully relativistic approximation to the meson spectrum , 1978 .

[40]  V. Alfaro,et al.  Conformal invariance in quantum mechanics , 1976 .

[41]  Richard Phillips Feynman,et al.  Current matrix elements from a relativistic quark model , 1971 .

[42]  F. Halzen,et al.  Regge parametrization for low-energy πN scattering , 1971 .

[43]  F. Gilman,et al.  SCALING, DUALITY, AND THE BEHAVIOR OF RESONANCES IN INELASTIC ELECTRON-- PROTON SCATTERING. , 1970 .

[44]  J. Bjorken,et al.  INELASTIC SCATTERING OF POLARIZED LEPTONS FROM POLARIZED NUCLEONS. , 1970 .