Eocene to late Oligocene history of crustal shortening within the Hoh Xil Basin and implications for the uplift history of the northern Tibetan Plateau

The timing and magnitude of deformation across the northern Tibetan Plateau are poorly constrained but feature prominently in geodynamic models of the plateau's evolution. The Fenghuoshan fold and thrust belt, located in the Hoh Xil Basin, provides a valuable record of the Cenozoic deformation history of the northern Tibetan Plateau. Here we integrate fault gouge geochronology, low‐temperature thermochronology, geologic mapping, and a balanced cross section to resolve the deformation history of Hoh Xil Basin. Chronologic data suggest that deformation initiated in the mid‐Eocene continued until at least 34 Ma and ceased by 27 Ma. The balanced cross section resolves 34 ± 12 km upper crustal shortening (24 ± 9%). We explore whether the observed Cenozoic shortening can account for the modern elevation and lithospheric thickness in the northern Tibetan Plateau. For a range of reasonable preshortening conditions, we conclude that the observed shortening alone cannot achieve modern crustal and mantle lithospheric thicknesses or modern elevation without either the removal of lithospheric mantle, the influx of lower crustal material, or some combination of these processes. Our results, along with previous studies, suggest that crustal shortening propagated into the northern Tibetan Plateau shortly after the onset of the Indo‐Asian collision. The small magnitude of shortening and the late Oligocene cessation of deformation in the northern Tibetan Plateau raise questions of how and where the remaining Indo‐Asian convergence was accommodated between Eocene to mid‐Miocene time, prior to the approximately late Miocene establishment of the deformation patterns observed in the present day.

[1]  W. Dixon,et al.  Simplified Statistics for Small Numbers of Observations , 1951 .

[2]  N. Kuiper Tests concerning random points on a circle , 1960 .

[3]  J. Hower,et al.  The mineralogy of illites and mixed-layer illite/montmorillonites , 1966 .

[4]  Derek York,et al.  Least squares fitting of a straight line with correlated errors , 1968 .

[5]  C. D. A. Dahlstrom Balanced cross sections , 1969 .

[6]  L. P. Pellinen Physical Geodesy , 1972 .

[7]  Paul F. Green,et al.  A new look at statistics in fission-track dating , 1981 .

[8]  R. Galbraith On statistical models for fission track counts , 1981 .

[9]  P. England,et al.  A thin viscous sheet model for continental deformation , 1982 .

[10]  N. Christensen,et al.  Seismic properties, density, and composition of the Icelandic crust near Reydarfjördur , 1982 .

[11]  P. Tapponnier,et al.  Deformation phases and tectonic evolution of the Lhasa block (southern Tibet, China) , 1983 .

[12]  A. Şengör The Cimmeride Orogenic System and the Tectonics of Eurasia , 1984 .

[13]  P. Molnar,et al.  Preliminary conclusions of the Royal Society and Academia Sinica 1985 geotraverse of Tibet , 1986, Nature.

[14]  Philip England,et al.  The Cretaceous‐tertiary deformation of the Lhasa Block and its implications for crustal thickening in Tibet , 1986 .

[15]  Philip England,et al.  FINITE STRAIN CALCULATIONS OF CONTINENTAL DEFORMATION .2. COMPARISON WITH THE INDIA-ASIA COLLISION ZONE , 1986 .

[16]  P. Gans An open‐system, two‐layer crustal stretching model for the Eastern Great Basin , 1987 .

[17]  B. Isacks Uplift of the Central Andean Plateau and bending of the Bolivian orocline , 1988 .

[18]  J. Dewey,et al.  The tectonic evolution of the Tibetan Plateau , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  P. Molnar,et al.  Geological mapping of the 1985 Chinese—British Tibetan (Xizang—Qinghai) Plateau Geotraverse route , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  Li Huan,et al.  The Tibetan plateau: regional stratigraphic context and previous work , 1988, Philosophical transactions of the Royal Society of London. Series A: Mathematical and physical sciences.

[21]  W. Kidd,et al.  The structure of the 1985 Tibet Geotraverse, Lhasa to Golmud , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[22]  M. Leeder,et al.  Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[23]  Philip England,et al.  Extension during continental convergence, with application to the Tibetan Plateau , 1989 .

[24]  J. Dewey,et al.  Tectonic evolution of the India/Eurasia collision zone , 1989 .

[25]  J. Walker,et al.  Geochemistry of crustally derived leucocratic igneous rocks from the Ulugh Muztagh Area, Northern Tibet and their implications for the formation of the Tibetan Plateau , 1990 .

[26]  F. A. Dahlen,et al.  CRITICAL TAPER MODEL OF FOLD-AND-THRUST BELTS AND ACCRETIONARY WEDGES , 1990 .

[27]  P. Tapponnier,et al.  The high K2O volcanism of northwestern Tibet: Geochemistry and tectonic implications , 1992 .

[28]  Peter Molnar,et al.  Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon , 1993 .

[29]  B. Isacks,et al.  High-level surfaces, plateau uplift, and foreland development, Bolivian central Andes , 1993 .

[30]  An Yin,et al.  An indentation model for the North and South China collision and the development of the Tan‐Lu and Honam Fault Systems, eastern Asia , 1993 .

[31]  N. Rogers,et al.  Timing of Tibetan uplift constrained by analysis of volcanic rocks , 1993, Nature.

[32]  Walter D. Mooney,et al.  Seismic velocity structure and composition of the continental crust: A global view , 1995 .

[33]  B. Burchfiel,et al.  Tectonics of the Longmen Shan and Adjacent Regions, Central China , 1995 .

[34]  T. Harrison,et al.  Thermal evolution of the Gangdese batholith, southern Tibet: A history of episodic unroofing , 1995 .

[35]  N. Rogers,et al.  Post-collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the Source of Ocean Island Basalts , 1996 .

[36]  S. Graham,et al.  Extrusion of the Altyn Tagh wedge: A kinematic model for the Altyn Tagh fault and palinspastic reconstruction of northern China , 1996 .

[37]  D. Rowley Age of initiation of collision between India and Asia: A review of stratigraphic data , 1996 .

[38]  X. Wang,et al.  Did the Indo-Asian collision alone create the Tibetan plateau? , 1997 .

[39]  A. C. Warnock,et al.  An evaluation of low-temperature apatite UTh/He thermochronometry , 1997 .

[40]  Thomas J. Owens,et al.  Implications of crustal property variations for models of Tibetan plateau evolution , 1997, nature.

[41]  T. Harrison,et al.  Evaluating the role of preexisting weaknesses and topographic distributions in the Indo-Asian collision by use of a thin-shell numerical model , 1997 .

[42]  J. Malavieille,et al.  U–Pb dating on single detrital zircon grains from the Triassic Songpan–Ganze flysch (Central China): provenance and tectonic correlations , 1997 .

[43]  D. Rowley Minimum Age of Initiation of Collision Between India and Asia North of Everest Based on the Subsidence History of the Zhepure Mountain Section , 1998, The Journal of Geology.

[44]  P. Renne,et al.  40Ar/39Ar geochronology of Roman volcanic province tephra in the Tiber River valley: Age calibration of middle Pleistocene sea-level changes , 1998 .

[45]  M. Gutscher,et al.  Episodic imbricate thrusting and underthrusting: Analog experiments and mechanical analysis applied to the Alaskan Accretionary Wedge , 1998 .

[46]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[47]  D. Pevear Illite and hydrocarbon exploration. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Richard A. Ketcham,et al.  Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales , 1999 .

[49]  J. Shaw,et al.  Estimation of fault propagation distance from fold shape: Implications for earthquake hazard assessment , 2000 .

[50]  U. Schärer,et al.  An Eocene magmatic belt across central Tibet: mantle subduction triggered by the Indian collision? , 2000 .

[51]  K. Farley,et al.  Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite , 2000 .

[52]  M. Rowan,et al.  Fold-Evolution Matrices and Axial-Surface Analysis of Fault-Bend Folds: Application to the Medina Anticline, Eastern Cordillera, Colombia , 2000 .

[53]  The gravity and isostatic Moho undulations in Qinghai–Tibet plateau , 2000 .

[54]  L. Ratschbacher,et al.  Hot and dry deep crustal xenoliths from tibet , 2000, Science.

[55]  Chengshan Wang,et al.  Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, northern Tibet , 2001 .

[56]  Bertrand Meyer,et al.  Oblique Stepwise Rise and Growth of the Tibet Plateau , 2001, Science.

[57]  Chengshan Wang,et al.  Evolution and Mass Accumulation of the Cenozoic Hoh Xil Basin, Northern Tibet , 2001 .

[58]  B. N. Upreti,et al.  Stratigraphy, structure, and tectonic evolution of the Himalayan fold‐thrust belt in western Nepal , 2001 .

[59]  J. Malavieille,et al.  Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: fission-track constraints , 2001 .

[60]  P. Vrolijk,et al.  The dating of shallow faults in the Earth's crust , 2001, Nature.

[61]  Depositional Environment of the Tertiary Fenghuoshan Group in the Hoh Xil Basin, Northern Tibetan Plateau , 2001 .

[62]  Andrew D. Hanson,et al.  Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation , 2002 .

[63]  A. Yin,et al.  Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet , 2002 .

[64]  P. Tapponnier,et al.  Seismic evidence for stepwise thickening of the crust across the NE Tibetan plateau , 2002 .

[65]  Tammer A. Farid,et al.  Interpreting the geologic map expression of contractional fault-related fold terminations: lateral/oblique ramps versus displacement gradients , 2002 .

[66]  K. Farley,et al.  (U-Th)/He Dating of Phosphates: Apatite, Monazite, and Xenotime , 2002 .

[67]  Chengshan Wang,et al.  Tertiary crustal shortening and peneplanation in the Hoh Xil region: implications for the tectonic history of the northern Tibetan Plateau , 2002 .

[68]  T. Harrison,et al.  Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet , 2003 .

[69]  M. Villeneuve,et al.  An intercalibration study of the Fish Canyon sanidine and biotite 40Ar/39Ar standards and some comments on the age of the Fish Canyon Tuff , 2003 .

[70]  Chengshan Wang,et al.  Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history of the Tibetan Plateau , 2003 .

[71]  M. Searle,et al.  The structural geometry, metamorphic and magmatic evolution of the Everest massif, High Himalaya of Nepal–South Tibet , 2003, Journal of the Geological Society.

[72]  L. Ding,et al.  Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction , 2003 .

[73]  K. Farley,et al.  Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes , 2003 .

[74]  Mei Jiang,et al.  Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet , 2004 .

[75]  Ang Yong-sheng Characteristics of Fenghuoshan Group's material and its era discussion , 2004 .

[76]  S. Kelley,et al.  Nature of the source regions for post-collisional, potassic magmatism in Southern and Northern Tibet from geochemical variations and inverse trace element modelling , 2004 .

[77]  A. Yin,et al.  Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet , 2005 .

[78]  J. Braun Quantitative Constraints on the Rate of Landform Evolution Derived from Low-Temperature Thermochronology , 2005 .

[79]  Hua-Wei Zhou,et al.  Tomographic evidence for wholesale underthrusting of India beneath the entire Tibetan plateau , 2005 .

[80]  P. DeCelles,et al.  Lithospheric evolution of the Andean fold-thrust belt, Bolivia, and the origin of the central Andean plateau , 2005 .

[81]  T. Harrison,et al.  Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet , 2005 .

[82]  Richard A. Ketcham,et al.  Forward and Inverse Modeling of Low-Temperature Thermochronometry Data , 2005 .

[83]  B. Pluijm,et al.  Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah , 2005 .

[84]  P. O’Sullivan,et al.  Fundamentals of Fission-Track Thermochronology , 2005 .

[85]  J. M. Bush,et al.  Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau , 2005 .

[86]  Liu Wenming,et al.  Geologic characteristics and ore-controls of the Fenghuoshan copper ore deposit, Qinghai province, China , 2005 .

[87]  R. Ketcham,et al.  Apatite Fission-Track Analysis , 2005 .

[88]  Wang Shicheng,et al.  Apatite fission track evidence for Neogene uplift in the eastern Kunlun Mountains, northern Qinghai-Tibet Plateau, China , 2006 .

[89]  M. Searle,et al.  Crustal flow in Tibet : geophysical evidence for the physical state of Tibetan lithosphere , and inferred patterns of active flow , 2006 .

[90]  B. Currie,et al.  Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet , 2006, Nature.

[91]  M. Wilson,et al.  Post-collisional, Potassic and Ultrapotassic Magmatism of the Northern Tibetan Plateau: Constraints on Characteristics of the Mantle Source, Geodynamic Setting and Uplift Mechanisms , 2006 .

[92]  B. Pluijm,et al.  Fault dating in the Canadian Rocky Mountains: Evidence for late Cretaceous and early Eocene orogenic pulses , 2006 .

[93]  L. Ding,et al.  Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet , 2007 .

[94]  P. DeCelles,et al.  High and dry in central Tibet during the Late Oligocene , 2007 .

[95]  A. Leier,et al.  The Gangdese retroarc thrust belt revealed , 2007 .

[96]  J. Solum,et al.  Reconstructing the Snake River–Hoback River Canyon section of the Wyoming thrust belt through direct dating of clay-rich fault rocks , 2007 .

[97]  G. Gehrels,et al.  Late Cretaceous to middle Tertiary basin evolution in the central Tibetan Plateau: Changing environments in response to tectonic partitioning, aridification, and regional elevation gain , 2007 .

[98]  G. Gehrels,et al.  Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet , 2007 .

[99]  Duan Qi-fa Sporopollen Assemblage from the Totohe Formation and Its Stratigraphic Significance in the Tanggula Mountains,Northern Tibet , 2007 .

[100]  Zhong Cheng-quan Analysis of the evolution of the Cenozoic ecological environment and process of plateau surface uplift in the Wenquan area in the interior of the Qinghai-Tibet Plateau , 2007 .

[101]  P. Kapp,et al.  Cretaceous‐Tertiary structural evolution of the north central Lhasa terrane, Tibet , 2007 .

[102]  R. Ketcham,et al.  Improved modeling of fission-track annealing in apatite , 2007 .

[103]  Wang Chengshan,et al.  Early Uplift History of the Tibetan Plateau: Records from Paleocurrents and Paleodrainage in the Hoh Xil Basin , 2008 .

[104]  P. Barosh,et al.  Vast early Miocene lakes of the central Tibetan Plateau , 2008 .

[105]  Chengshan Wang,et al.  Constraints on the early uplift history of the Tibetan Plateau , 2008, Proceedings of the National Academy of Sciences.

[106]  Jiang,et al.  Geochemistry and petrogenesis of Cenozoic potassic volcanic rocks in the Hoh Xil area, northern Tibet plateau , 2008 .

[107]  S. Haines,et al.  Clay quantification and Ar–Ar dating of synthetic and natural gouge: Application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico , 2008 .

[108]  G. Gehrels,et al.  Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin , 2008 .

[109]  Duan Qi-fa OLIGOCENE PALYNOFLORA,PALEOVEGETATION AND PALEOCLIMATE IN THE TANGGULA MOUNTAINS,NORTHERN TIBET , 2008 .

[110]  K. Farley,et al.  Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model , 2009 .

[111]  P. Molnar,et al.  Far‐field lithospheric deformation in Tibet during continental collision , 2009 .

[112]  John Chen,et al.  Underplating in the Himalaya-Tibet Collision Zone Revealed by the Hi-CLIMB Experiment , 2009, Science.

[113]  Brian S. Currie,et al.  Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers , 2009 .

[114]  G. Dupont‐Nivet,et al.  Palaeolatitude and age of the Indo–Asia collision: palaeomagnetic constraints , 2010 .

[115]  S. Haines,et al.  Dating the detachment fault system of the Ruby Mountains, Nevada: Significance for the kinematics of low‐angle normal faults , 2010 .

[116]  K. Farley,et al.  Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite (U–Th)/He ages , 2010 .

[117]  P. Bown,et al.  Timing of India‐Asia collision: Geological, biostratigraphic, and palaeomagnetic constraints , 2010 .

[118]  J. Avouac,et al.  Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography , 2010 .

[119]  Richard Styron,et al.  Database of Active Structures From the Indo‐Asian Collision , 2010 .

[120]  Peizhen Zhang,et al.  Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau) , 2010 .

[121]  Xixi Zhao,et al.  Palaeomagnetism and 40Ar/39Ar geochronology of upper Palaeogene volcanic rocks from Central Tibet: implications for the Central Asia inclination anomaly, the palaeolatitude of Tibet and post-50 Ma shortening within Asia , 2011 .

[122]  Richard W. Allmendinger,et al.  Assessing uncertainties in balanced cross sections , 2011 .

[123]  Chengshan Wang,et al.  Balanced cross-section and crustal shortening analysis in the Tanggula-Tuotuohe Area, Northern Tibet , 2011 .

[124]  M. Clark,et al.  Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry , 2011 .

[125]  E. Kirby,et al.  Late Miocene–Pliocene range growth in the interior of the northeastern Tibetan Plateau , 2011 .

[126]  M. Kent-Corson,et al.  Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau: Constraints from sedimentary records from Qaidam basin, Hexi Corridor, and Subei basin, northwest China , 2011, American Journal of Science.

[127]  B. Klecker,et al.  On the origin of the energetic ion events measured upstream of the Earth's bow shock by STEREO, Cluster, and Geotail , 2011 .

[128]  Wenjin Zhao,et al.  Injection of Tibetan crust beneath the south Qaidam Basin: Evidence from INDEPTH IV wide‐angle seismic data , 2011 .

[129]  Chengshan Wang,et al.  The vast proto-Tibetan Plateau: New constraints from Paleogene Hoh Xil Basin , 2012 .

[130]  Chengshan Wang,et al.  Cenozoic thrust system, basin evolution, and uplift of the Tanggula Range in the Tuotuohe region, central Tibet , 2012 .

[131]  M. Clark Continental collision slowing due to viscous mantle lithosphere rather than topography , 2012, Nature.

[132]  L. Ding,et al.  Thermochronologic evidence for plateau formation in central Tibet by 45 Ma , 2012 .

[133]  W. Fan,et al.  Lithospheric and upper mantle structure of the northeastern Tibetan Plateau , 2012 .

[134]  D. Wyman,et al.  Crustal Melting and Flow beneath Northern Tibet: Evidence from Mid-Miocene to Quaternary Strongly Peraluminous Rhyolites in the Southern Kunlun Range , 2012 .

[135]  B. Kohn,et al.  Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift , 2013 .

[136]  Marin K. Clark,et al.  Low‐temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late‐stage orogenesis , 2013 .

[137]  N. Niemi Geologic Map of the Central Grapevine Mountains , Inyo County , California , and Esmeralda and Nye Counties , Nevada , 2013 .

[138]  T. Jeppson,et al.  Implications of transient deformation in the northern Basin and Range, western United States , 2013 .

[139]  L. Ding,et al.  Paleogene high elevations in the Qiangtang Terrane, central Tibetan Plateau , 2013 .

[140]  G. Gehrels,et al.  Northern Lhasa thrust belt of central Tibet: Evidence of Cretaceous–early Cenozoic shortening within a passive roof thrust system? , 2014 .

[141]  G. Dupont‐Nivet,et al.  Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia , 2014 .

[142]  A. Jones,et al.  Integrated geophysical‐petrological modeling of lithosphere‐asthenosphere boundary in central Tibet using electromagnetic and seismic data , 2014 .

[143]  Chang Hong,et al.  A Cretaceous‐Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin: Implications for the tectonic evolution of the northern Tibet Plateau , 2014 .

[144]  M. Wilson,et al.  The role of subduction channel mélanges and convergent subduction systems in the petrogenesis of post-collisional K-rich mafic magmatism in NW Tibet , 2014 .

[145]  M. Clark,et al.  Conservation and redistribution of crust during the Indo‐Asian collision , 2014 .

[146]  L. Ding,et al.  The Andean-type Gangdese Mountains: Paleoelevation record from the Paleocene-Eocene Linzhou Basin , 2014 .

[147]  R. Gao,et al.  Isostatic gravity anomaly, lithospheric scale density structure of the northern Tibetan plateau and geodynamic causes for potassic lava eruption in Neogene , 2014 .

[148]  M. Ritzwoller,et al.  Partially melted, mica‐bearing crust in Central Tibet , 2014 .

[149]  G. Gehrels,et al.  Paleocene‐Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India‐Asia collision , 2014 .

[150]  E. Garzanti,et al.  Himalayan detrital chromian spinels and timing of Indus-Yarlung ophiolite erosion , 2014 .

[151]  Yingjie Yang,et al.  Penetration of mid-crustal low velocity zone across the Kunlun Fault in the NE Tibetan Plateau revealed by ambient noise tomography , 2014 .

[152]  A. Jones,et al.  Constraints on the evolution of crustal flow beneath Northern Tibet , 2015 .

[153]  P. Yakovlev Evolution of the Indo-Asian Orogen: Insights from the Deformation of the Northern Tibetan Plateau, Mass Balance Calculations, and Volcanic Geochemistry , 2015 .

[154]  M. Clark,et al.  Oligocene termination of shortening and initiation of volcanism in the northern Tibetan Plateau: Early removal of Tibetan mantle lithosphere? , 2015 .

[155]  B. Carrapa,et al.  Sedimentology, provenance and geochronology of the upper Cretaceous–lower Eocene western Xigaze forearc basin, southern Tibet , 2015 .

[156]  Yu-Fei Wang,et al.  Early Miocene elevation in northern Tibet estimated by palaeobotanical evidence , 2015, Scientific Reports.

[157]  X. Fang,et al.  A Late-Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation , 2016 .