Sharp Bounds on Generalized EXIT Functions

We consider communication over binary-input memoryless symmetric channels with low-density parity-check (LDPC) codes. The relationship between maximum a posteriori and belief propagation decoding is investigated using a set of correlation inequalities that first appeared in statistical mechanics of Gaussian spin glasses. We prove bounds on generalized extrinsic information transfer (EXIT) functions, that are believed to be tight, and discuss their relationship with the ones obtained by the interpolation method.

[1]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[2]  Nicolas Macris,et al.  Correlation inequalities: a useful tool in the theory of LDPC codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[3]  Pisa,et al.  Quadratic replica coupling in the Sherrington-Kirkpatrick mean field spin glass model , 2002, cond-mat/0201091.

[4]  Andrea Montanari,et al.  The Generalized Area Theorem and Some of its Consequences , 2005, IEEE Transactions on Information Theory.

[5]  Andrea Montanari,et al.  Maximum a posteriori decoding and turbo codes for general memoryless channels , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[6]  Michele Leone,et al.  Replica Bounds for Optimization Problems and Diluted Spin Systems , 2002 .

[7]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[8]  Andrea Montanari,et al.  Life Above Threshold: From List Decoding to Area Theorem and MSE , 2004, ArXiv.

[9]  Andrea Montanari,et al.  Tight bounds for LDPC and LDGM codes under MAP decoding , 2004, IEEE Transactions on Information Theory.

[10]  Nicolas Macris,et al.  Griffith–Kelly–Sherman Correlation Inequalities: A Useful Tool in the Theory of Error Correcting Codes , 2007, IEEE Transactions on Information Theory.

[11]  David P. Landau,et al.  Phase transitions and critical phenomena , 1989, Computing in Science & Engineering.

[12]  Stephan ten Brink,et al.  Convergence behavior of iteratively decoded parallel concatenated codes , 2001, IEEE Trans. Commun..

[13]  Nicolas Macris,et al.  Sharp Bounds for MAP Decoding of General Irregular LDPC Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[14]  Shlomo Shamai,et al.  Mutual information and MMSE in gaussian channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[15]  Nicolas Macris,et al.  On the relation between MAP and BP GEXIT functions of low density parity check codes , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[16]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[17]  Andrea Montanari,et al.  Maxwell Construction: The Hidden Bridge Between Iterative and Maximum a Posteriori Decoding , 2005, IEEE Transactions on Information Theory.

[18]  Nicolas Macris,et al.  Exact solution for the conditional entropy of Poissonian LDPC codes over the Binary Erasure Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[19]  Pierluigi Contucci,et al.  Griffiths inequalities for the Gaussian spin glass , 2004 .

[20]  G. Kramer,et al.  Code rate and the area under extrinsic information transfer curves , 2002, Proceedings IEEE International Symposium on Information Theory,.

[21]  Rüdiger L. Urbanke,et al.  Modern Coding Theory , 2008 .

[22]  A. Montanari The glassy phase of Gallager codes , 2001, cond-mat/0104079.