Quantum Boltzmann Machine
暂无分享,去创建一个
Roger Melko | Mohammad H. Amin | Jason Rolfe | Evgeny Andriyash | Bohdan Kulchytskyy | J. Rolfe | R. Melko | M. Amin | E. Andriyash | B. Kulchytskyy
[1] Hiroshi Nagaoka,et al. An information geometrical approach to the mean-field approximation for quantum Ising spin models , 2008 .
[2] M. W. Johnson,et al. Thermally assisted quantum annealing of a 16-qubit problem , 2013, Nature Communications.
[3] N. J. Cohen,et al. Higher-Order Boltzmann Machines , 1986 .
[4] S. Lloyd,et al. Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.
[5] Karoline Wiesner,et al. Quantum mechanics can reduce the complexity of classical models , 2011, Nature Communications.
[6] Geoffrey E. Hinton,et al. OPTIMAL PERCEPTUAL INFERENCE , 1983 .
[7] S. Golden. LOWER BOUNDS FOR THE HELMHOLTZ FUNCTION , 1965 .
[8] Yee Whye Teh,et al. A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.
[9] Masoud Mohseni,et al. Computational Role of Multiqubit Tunneling in a Quantum Annealer , 2015 .
[10] C. Thompson. Inequality with Applications in Statistical Mechanics , 1965 .
[11] Hartmut Neven,et al. Training a Large Scale Classifier with the Quantum Adiabatic Algorithm , 2009, ArXiv.
[12] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[13] M. W. Johnson,et al. Experimental investigation of an eight-qubit unit cell in a superconducting optimization processor , 2010, 1004.1628.
[14] Geoffrey E. Hinton,et al. Modeling pixel means and covariances using factorized third-order boltzmann machines , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[15] M. W. Johnson,et al. Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.
[16] W. Macready,et al. Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization , 2008, 0804.4457.
[17] Daniel A. Lidar,et al. Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.
[18] Geoffrey E. Hinton,et al. Learning to Represent Spatial Transformations with Factored Higher-Order Boltzmann Machines , 2010, Neural Computation.
[19] M. Amin. Searching for quantum speedup in quasistatic quantum annealers , 2015, 1503.04216.
[20] Vasil S. Denchev,et al. Computational multiqubit tunnelling in programmable quantum annealers , 2015, Nature Communications.
[21] Geoffrey E. Hinton,et al. Deep Boltzmann Machines , 2009, AISTATS.
[22] Yoshua Bengio,et al. On the Challenges of Physical Implementations of RBMs , 2013, AAAI.
[23] Misha Denil. Toward the Implementation of a Quantum RBM , 2011 .
[24] M. Benedetti,et al. Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning , 2015, 1510.07611.
[25] Rupak Biswas,et al. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models , 2016, 1609.02542.
[26] Tapani Raiko,et al. NIPS 2011 Workshop on Deep Learning and Unsupervised Feature Learning , 2011 .
[27] Geoffrey E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.
[28] Michael I. Jordan,et al. Machine learning: Trends, perspectives, and prospects , 2015, Science.
[29] M. W. Johnson,et al. Quantum annealing with manufactured spins , 2011, Nature.
[30] David P. DiVincenzo,et al. The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..
[31] Daniel A. Lidar,et al. Experimental signature of programmable quantum annealing , 2012, Nature Communications.
[32] Geoffrey E. Hinton,et al. Modeling image patches with a directed hierarchy of Markov random fields , 2007, NIPS.
[33] Ashish Kapoor,et al. Quantum deep learning , 2014, Quantum Inf. Comput..
[34] Daniel A. Lidar,et al. Quantum adiabatic machine learning , 2011, Quantum Inf. Process..