Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach

This paper proposes a probabilistic approach for the detection and the tracking of particles in fluorescent time-lapse imaging. In the presence of a very noised and poor-quality data, particles and trajectories can be characterized by an a contrario model, that estimates the probability of observing the structures of interest in random data. This approach, first introduced in the modeling of human visual perception and then successfully applied in many image processing tasks, leads to algorithms that neither require a previous learning stage, nor a tedious parameter tuning and are very robust to noise. Comparative evaluations against a well-established baseline show that the proposed approach outperforms the state of the art.

[1]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[2]  Pekka Ruusuvuori,et al.  Open Access Research Article Evaluation of Methods for Detection of Fluorescence Labeled Subcellular Objects in Microscope Images , 2022 .

[3]  Cremer,et al.  High‐precision distance measurements and volume‐conserving segmentation of objects near and below the resolution limit in three‐dimensional confocal fluorescence microscopy , 1998 .

[4]  Lionel Moisan,et al.  Accelerated A-contrario detection of smooth trajectories , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[5]  Donald Reid An algorithm for tracking multiple targets , 1978 .

[6]  Shawn M. Gomez,et al.  High-Resolution Quantification of Focal Adhesion Spatiotemporal Dynamics in Living Cells , 2011, PloS one.

[7]  Norio Baba,et al.  Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images , 2010, BMC Bioinformatics.

[8]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[9]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[10]  Cheng Fang,et al.  Axonal transport analysis using Multitemporal Association Tracking , 2012, Int. J. Comput. Biol. Drug Des..

[11]  Ingemar J. Cox,et al.  A review of statistical data association techniques for motion correspondence , 1993, International Journal of Computer Vision.

[12]  R Bellman,et al.  On the Theory of Dynamic Programming. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Gregory D. Hager,et al.  Multiple kernel tracking with SSD , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[14]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[15]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[16]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[17]  Erik Meijering,et al.  ATP-dependent and independent functions of Rad54 in genome maintenance , 2011, The Journal of cell biology.

[18]  Lionel Moisan,et al.  Meaningful Alignments , 2000, International Journal of Computer Vision.

[19]  Theofanis Sapatinas,et al.  Discriminant Analysis and Statistical Pattern Recognition , 2005 .

[20]  Y. Kalaidzidis,et al.  Rab Conversion as a Mechanism of Progression from Early to Late Endosomes , 2005, Cell.

[21]  Joakim Jaldén,et al.  A batch algorithm using iterative application of the Viterbi algorithm to track cells and construct cell lineages , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[22]  VincentL. Morphological grayscale reconstruction in image analysis , 1993 .

[23]  M K Cheezum,et al.  Quantitative comparison of algorithms for tracking single fluorescent particles. , 2001, Biophysical journal.

[24]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[25]  H Schindler,et al.  Single-molecule microscopy on model membranes reveals anomalous diffusion. , 1997, Biophysical journal.

[26]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[27]  Y. Tsuchiya,et al.  Stepping motion of the organelle in a perfused characean cell , 2003, FEBS letters.

[28]  Andrew R. Cohen,et al.  Vertebrate neural stem cell segmentation, tracking and lineaging with validation and editing , 2011, Nature Protocols.

[29]  B. C. Carter,et al.  Tracking single particles: a user-friendly quantitative evaluation , 2005, Physical biology.

[30]  Wiro J. Niessen,et al.  Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy , 2010, IEEE Transactions on Medical Imaging.

[31]  Michael Unser,et al.  Automatic tracking of individual fluorescence particles: application to the study of chromosome dynamics , 2005, IEEE Transactions on Image Processing.

[32]  William J. Godinez,et al.  Objective comparison of particle tracking methods , 2014, Nature Methods.

[33]  Wiro J. Niessen,et al.  Multiple object tracking in molecular bioimaging by Rao-Blackwellized marginal particle filtering , 2008, Medical Image Anal..

[34]  Y-S Tsai,et al.  Morphological filter improve the efficiency of automated tracking of secretory vesicles with various dynamic properties , 2009, Microscopy research and technique.

[35]  Henning Stahlberg,et al.  Characterization of the motion of membrane proteins using high-speed atomic force microscopy. , 2012, Nature nanotechnology.

[36]  T. Cremer,et al.  Quantitative motion analysis of subchromosomal foci in living cells using four-dimensional microscopy. , 1999, Biophysical journal.

[37]  Qiang Wu,et al.  Microscope Image Processing , 2010 .

[38]  G E Trahey,et al.  A real time system for quantifying and displaying two-dimensional velocities using ultrasound. , 1993, Ultrasound in medicine & biology.

[39]  Karl Rohr,et al.  Probabilistic Tracking of Virus Particles in Fluorescence Microscopy Image Sequences , 2008, Bildverarbeitung für die Medizin.

[40]  S. Shorte,et al.  Quantitative four-dimensional tracking of cytoplasmic and nuclear HIV-1 complexes , 2006, Nature Methods.

[41]  J. Willemse,et al.  Single particle tracking of dynamically localizing TatA complexes in Streptomyces coelicolor. , 2013, Biochemical and biophysical research communications.

[42]  Mariella Dimiccoli,et al.  Localization of Protein Aggregation in Escherichia coli Is Governed by Diffusion and Nucleoid Macromolecular Crowding Effect , 2013, PLoS Comput. Biol..

[43]  H. Kestler,et al.  Significantly improved precision of cell migration analysis in time-lapse video microscopy through use of a fully automated tracking system , 2010, BMC Cell Biology.

[44]  Stephen T. C. Wong,et al.  Detection of molecular particles in live cells via machine learning , 2007, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[45]  Karl Rohr,et al.  Probabilistic tracking of virus particles in fluorescence microscopy images , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[46]  Bart M. ter Haar Romeny,et al.  Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.

[47]  Stefano Coraluppi,et al.  Recursive track fusion for multi-sensor surveillance , 2004, Inf. Fusion.

[48]  I T Young,et al.  Model-based resolution: applying the theory in quantitative microscopy. , 2000, Applied optics.

[49]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[50]  Jean-Christophe Olivo-Marin,et al.  Automatic detection of spots in biological images by a wavelet-based selective filtering technique , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[51]  Karl Rohr,et al.  Deterministic and probabilistic approaches for tracking virus particles in time-lapse fluorescence microscopy image sequences , 2009, Medical Image Anal..

[52]  Karl Rohr,et al.  Tracking multiple particles in fluorescence microscopy images via probabilistic data association , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[53]  Isabelle Bloch,et al.  Multiple hypothesis tracking in microscopy images , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[54]  D. Bright,et al.  Two‐dimensional top hat filter for extracting spots and spheres from digital images , 1987 .

[55]  R. Cherry,et al.  Tracking of cell surface receptors by fluorescence digital imaging microscopy using a charge-coupled device camera. Low-density lipoprotein and influenza virus receptor mobility at 4 degrees C. , 1992, Journal of cell science.

[56]  Tai-Yu Chiu,et al.  An automated tracking system to measure the dynamic properties of vesicles in living cells , 2007, Microscopy research and technique.

[57]  Peter Willett,et al.  PMHT: problems and some solutions , 2002 .

[58]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[59]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[60]  Anna Akhmanova,et al.  Tracking the ends: a dynamic protein network controls the fate of microtubule tips , 2008, Nature Reviews Molecular Cell Biology.

[61]  A. Ravishankar Rao,et al.  Computing oriented texture fields , 1991, CVGIP Graph. Model. Image Process..

[62]  Stefano Coraluppi,et al.  Multi-Stage Multiple-Hypothesis Tracking , 2011, J. Adv. Inf. Fusion.

[63]  Thomas Boudier,et al.  Software for drift compensation, particle tracking and particle analysis of high‐speed atomic force microscopy image series , 2012, Journal of molecular recognition : JMR.

[64]  P. Sorger,et al.  Automatic fluorescent tag detection in 3D with super‐resolution: application to the analysis of chromosome movement , 2002, Journal of microscopy.

[65]  Lionel Moisan,et al.  A-contrario Detectability of Spots in Textured Backgrounds , 2009, Journal of Mathematical Imaging and Vision.

[66]  James S. Duncan,et al.  Tracking Clathrin Coated Pits with a Multiple Hypothesis Based Method , 2010, MICCAI.

[67]  Mubarak Shah,et al.  A noniterative greedy algorithm for multiframe point correspondence , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Jean-Christophe Olivo-Marin,et al.  Extraction of spots in biological images using multiscale products , 2002, Pattern Recognit..

[69]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[70]  Mohamed-Jalal Fadili,et al.  Multiscale Variance-Stabilizing Transform for Mixed-Poisson-Gaussian Processes and its Applications in Bioimaging , 2007, 2007 IEEE International Conference on Image Processing.

[71]  Lionel Moisan,et al.  Point tracking: an a-contrario approach , 2012 .

[72]  Takeo Kanade,et al.  Understanding the phase contrast optics to restore artifact-free microscopy images for segmentation , 2012, Medical Image Anal..

[73]  An-Ping Zeng,et al.  Modeling of intracellular transport and compartmentation. , 2012, Advances in biochemical engineering/biotechnology.

[74]  P. Koumoutsakos,et al.  Feature point tracking and trajectory analysis for video imaging in cell biology. , 2005, Journal of structural biology.

[75]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[76]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[77]  Patrick Pérez,et al.  Maintaining multimodality through mixture tracking , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[78]  Isabelle Bloch,et al.  Multiple hypothesis tracking in cluttered condition , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).