$W$ -Band BPSK and QPSK Transceivers With Costas-Loop Carrier Recovery in 65-nm CMOS Technology

This paper presents two fully integrated binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK) transceivers operating at W-band [carrier frequency = 84 GHz (BPSK), and 87 GHz (QPSK)]. Including RF front-end, Costas-loop-based carrier and data recovery, and antenna assembly technique, the BPSK transceiver prototype achieves a 2.5-Gb/s data link with BER <; 10-9 while consuming 202 mW (Tx) and 125 mW (Rx) from a 1.2-V supply. The QPSK TRx achieves a 2.5-Gb/s data link with BER <; 10-11 while consuming 212 mW (Tx) and 166 mW (Rx) from a 1.2-V supply. Both cases are measured with link distance of 1 m and antenna gain of 24 dBi.

[1]  Barrie Gilbert,et al.  A precise four-quadrant multiplier with subnanosecond response , 1968, IEEE Solid-State Circuits Newsletter.

[2]  Yongxi Qian,et al.  A broadband microstrip-to-waveguide transition using quasi-Yagi antenna , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[3]  Sorin P. Voinigescu,et al.  An 18-Gb/s, Direct QPSK Modulation SiGe BiCMOS Transceiver for Last Mile Links in the 70–80 GHz Band , 2009, IEEE Journal of Solid-State Circuits.

[4]  Ran-Hong Yan,et al.  A 13.4-GHz CMOS frequency divider , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[5]  Toshiaki Watanabe,et al.  Millimeter-wave microstrip line to waveguide transition fabricated on a single layer dielectric substrate , 2002 .

[6]  B. Razavi,et al.  A Millimeter-Wave CMOS Heterodyne Receiver With On-Chip LO and Divider , 2008, IEEE Journal of Solid-State Circuits.

[7]  Meng-Hsiung Hung,et al.  A 60-GHz FSK transceiver with automatically-calibrated demodulator in 90-nm CMOS , 2010, 2010 Symposium on VLSI Circuits.

[8]  Christer Svensson,et al.  High-speed CMOS circuit technique , 1989 .

[9]  Jri Lee,et al.  A 20-Gb/s Full-Rate Linear Clock and Data Recovery Circuit With Automatic Frequency Acquisition , 2009, IEEE Journal of Solid-State Circuits.

[10]  C. Chien,et al.  A single-chip 12.7 Mchips/s digital IF BPSK direct sequence spread-spectrum transceiver in 1.2 μm CMOS , 1994, IEEE J. Solid State Circuits.

[11]  Jri Lee,et al.  A 75-GHz Phase-Locked Loop in 90-nm CMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[12]  S. Gambini,et al.  A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry , 2009, IEEE Journal of Solid-State Circuits.

[13]  Jri Lee,et al.  A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[14]  L. Q. Bui,et al.  Waveguide-to-microstrip transitions for millimeter-wave applications , 1988, 1988., IEEE MTT-S International Microwave Symposium Digest.

[15]  J. Lee,et al.  A 40 Gb/s clock and data recovery circuit in 0.18 /spl mu/m CMOS technology , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[16]  Xiaojun Yuan,et al.  A low power 60GHz OOK transceiver system in 90nm CMOS with innovative on-chip AMC antenna , 2009, 2009 IEEE Asian Solid-State Circuits Conference.

[17]  Jri Lee,et al.  A Low-Power Low-Cost Fully-Integrated 60-GHz Transceiver System With OOK Modulation and On-Board Antenna Assembly , 2009, IEEE Journal of Solid-State Circuits.

[18]  Jri Lee A 20-Gb/s Adaptive Equalizer in 0.13-$muhbox m$CMOS Technology , 2006, IEEE Journal of Solid-State Circuits.

[19]  Hiroyuki Takahashi,et al.  10-Gbit/s QPSK modulator and demodulator for a 120-GHz-band wireless link , 2010, 2010 IEEE MTT-S International Microwave Symposium.

[20]  John P. Costas,et al.  Synchronous Communications , 1956, Proceedings of the IRE.

[21]  A. Tomkins,et al.  A Zero-IF 60 GHz 65 nm CMOS Transceiver With Direct BPSK Modulation Demonstrating up to 6 Gb/s Data Rates Over a 2 m Wireless Link , 2009, IEEE Journal of Solid-State Circuits.

[22]  B. Heydari,et al.  A 60-GHz 90-nm CMOS cascode amplifier with interstage matching , 2007, 2007 European Microwave Integrated Circuit Conference.

[23]  W. Menzel,et al.  Microstrip to waveguide transition compatible with MM-wave integrated circuits , 1994 .