Molecular dynamics and atomistic based continuum studies of the interfacial behavior of nanoreinforced epoxy

[1]  S. Meguid,et al.  Multiscale micromechanical modeling of the constitutive response of carbon nanotube-reinforced structural adhesives , 2014 .

[2]  A. Hamouda,et al.  Interface effects on the viscoelastic characteristics of carbon nanotube polymer matrix composites , 2013 .

[3]  M. Ray,et al.  Effective properties of a novel composite reinforced with short carbon fibers and radially aligned carbon nanotubes , 2012 .

[4]  Xiaodong He,et al.  A pullout model for inclined carbon nanotube , 2012 .

[5]  S. Meguid,et al.  Determination of the interfacial properties of carbon nanotube reinforced polymer composites using atomistic-based continuum model , 2012 .

[6]  S. A. Meguid,et al.  A novel approach to predict the electrical conductivity of multifunctional nanocomposites , 2012 .

[7]  S. Meguid,et al.  Atomistic-based continuum representation of the effective properties of nano-reinforced epoxies , 2010 .

[8]  José Mario Martínez,et al.  PACKMOL: A package for building initial configurations for molecular dynamics simulations , 2009, J. Comput. Chem..

[9]  M. K. Khan,et al.  Carbon nanotube reinforced porous gels of poly(methyl methacrylate) with nonsolvents as porogens. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[10]  L. Brinson,et al.  Curved-fiber pull-out model for nanocomposites. Part 1: Bonded stage formulation , 2009 .

[11]  L. Brinson,et al.  Curved-fiber pull-out model for nanocomposites. Part 2: Interfacial debonding and sliding , 2009 .

[12]  Q. Xue,et al.  Computational analysis of effect of modification on the interfacial characteristics of a carbon nanotube–polyethylene composite system , 2009 .

[13]  Xi Chen,et al.  The effects of chirality and boundary conditions on the mechanical properties of single-walled carbon nanotubes , 2007 .

[14]  I. Kinloch,et al.  The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[15]  R C Haddon,et al.  Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[16]  Xi Chen,et al.  Buckling behavior of single-walled carbon nanotubes and a targeted molecular mechanics approach , 2006 .

[17]  Xi Chen,et al.  Buckling of single-walled carbon nanotubes upon bending: Molecular dynamics simulations and finite element method , 2006 .

[18]  Yang Wang,et al.  Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes , 2002, Microscopy and Microanalysis.

[19]  Chuck Zhang,et al.  Computational analysis of effect of single-walled carbon nanotube rope on molecular interaction and load transfer of nanocomposites , 2005 .

[20]  Mauricio Terrones,et al.  Applications of carbon nanotubes in the twenty–first century , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Mary C. Boyce,et al.  Mechanics of deformation of single- and multi-wall carbon nanotubes , 2004 .

[22]  Sidney R. Cohen,et al.  Measurement of carbon nanotube-polymer interfacial strength , 2003 .

[23]  Sidney R. Cohen,et al.  Detachment of nanotubes from a polymer matrix , 2002 .

[24]  C. Shearwood,et al.  Mechanical properties and interfacial characteristics of carbon-nanotube-reinforced epoxy thin films , 2002 .

[25]  T. Belytschko,et al.  Atomistic simulations of nanotube fracture , 2002 .

[26]  Michael Griebel,et al.  Molecular Simulation of the Influence of Chemical Cross-Links on the Shear Strength of Carbon Nanotube-Polymer Interfaces , 2002 .

[27]  K. Liao,et al.  Interfacial characteristics of a carbon nanotube–polystyrene composite system , 2001 .

[28]  W. Goddard,et al.  Thermal conductivity of carbon nanotubes , 2000 .

[29]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[30]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[31]  Reshef Tenne,et al.  Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix , 1998 .

[32]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[33]  J. Bernholc,et al.  Nanomechanics of carbon tubes: Instabilities beyond linear response. , 1996, Physical review letters.

[34]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[35]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[36]  Arnold T. Hagler,et al.  An ab Initio CFF93 All-Atom Force Field for Polycarbonates , 1994 .

[37]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[38]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[39]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[40]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .