Finding Acceptable Solutions Faster Using Inadmissible Information

Bounded suboptimal search algorithms attempt to find a solution quickly while guaranteeing that the cost does not exceed optimal by more than a desired factor. These algorithms generally use a single admissible heuristic both for guidance and guaranteeing solution quality. We present a new approach to bounded suboptimal search that separates these roles, consulting multiple sources of potentially inadmissible information to determine search order and using admissible information to guarantee quality. An empirical evaluation across six benchmark domains shows the new approach has better overall performance.

[1]  Wheeler Ruml,et al.  Using Distance Estimates in Heuristic Search : A Re-evaluation , 2009 .

[2]  W. Ruml,et al.  Fast and Loose in Bounded Suboptimal Heuristic Search , 2008 .

[3]  Judea Pearl,et al.  Studies in Semi-Admissible Heuristics , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Geoffrey J. Gordon,et al.  ARA : formal analysis , 2003 .

[5]  Wheeler Ruml,et al.  Faster than Weighted A*: An Optimistic Approach to Bounded Suboptimal Search , 2008, ICAPS.

[6]  Wheeler Ruml,et al.  Using Distance Estimates in Heuristic Search , 2009, ICAPS.

[7]  Rina Dechter,et al.  The optimality of A , 1988 .

[8]  Ira Pohl,et al.  Heuristic Search Viewed as Path Finding in a Graph , 1970, Artif. Intell..

[9]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[10]  Jonathan Schaeffer,et al.  Learning from Multiple Heuristics , 2008, AAAI.

[11]  Wheeler Ruml,et al.  Finding Acceptable Solutions Faster Using Inadmissible Information Computer Science Technical Report 10-01 , 2010 .

[12]  Sebastian Thrun,et al.  ARA*: Anytime A* with Provable Bounds on Sub-Optimality , 2003, NIPS.

[13]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[14]  Ira Pohl,et al.  The Avoidance of (Relative) Catastrophe, Heuristic Competence, Genuine Dynamic Weighting and Computational Issues in Heuristic Problem Solving , 1973, IJCAI.

[15]  Malik Ghallab,et al.  Aepsilon - An Efficient Near Admissible Heuristic Search Algorithm , 1983, IJCAI.

[16]  Richard E. Korf,et al.  Iterative-Deepening-A*: An Optimal Admissible Tree Search , 1985, IJCAI.

[17]  Murray Leaf,et al.  WHAT IS “FORMAL” ANALYSIS? , 2004, Cybern. Syst..

[18]  Nils J. Nilsson,et al.  Artificial Intelligence: A New Synthesis , 1997 .

[19]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[20]  Marek Petrik,et al.  Learning Heuristic Functions through Approximate Linear Programming , 2008, ICAPS.