Interference Estimation in IEEE 802.11 Networks

This article describes a technique for distinguishing and quantifying medium access control (MAC) and physical layer (PHY) interference in error-prone 802.11 networks. This technique, is fully distributed, allowing each station to estimate interference individually. The estimator is based on an extended Kalman filter coupled to a mechanism for revealing abrupt changes in state. The network state is a vector of two components, representing PHY interference, expressed in terms of channel-error rate, and MAC interference. Two distinct state models are considered. When PHY interference can be assumed to be constant for all stations, network congestion is expressed by the number of competing terminals.

[1]  Bo Li,et al.  A new collision resolution mechanism to enhance the performance of IEEE 802.11 DCF , 2004, IEEE Trans. Veh. Technol..

[2]  Ilenia Tinnirello,et al.  Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[3]  L. Kleinrock,et al.  Packet Switching in Radio Channels : Part Il-The Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution , 2022 .

[4]  Ilenia Tinnirello,et al.  Experimental Assessment of the Backoff Behavior of Commercial IEEE 802.11b Network Cards , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[5]  Bernhard Walke,et al.  IEEE 802.11 Wireless Local Area Networks , 2006 .

[6]  Thierry Turletti,et al.  IEEE 802.11 rate adaptation: a practical approach , 2004, MSWiM '04.

[7]  Marco Conti,et al.  Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit , 2000, TNET.

[8]  Stephan Robert,et al.  Dynamic tuning of the contention window minimum (CW/sub min/) for enhanced service differentiation in IEEE 802.11 wireless ad-hoc networks , 2004, 2004 IEEE 15th International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE Cat. No.04TH8754).

[9]  Seongkwan Kim,et al.  CARA: Collision-Aware Rate Adaptation for IEEE 802.11 WLANs , 2006, Proceedings IEEE INFOCOM 2006. 25TH IEEE International Conference on Computer Communications.

[10]  Kee Chaing Chua,et al.  A Capacity Analysis for the IEEE 802.11 MAC Protocol , 2001, Wirel. Networks.

[11]  Sangki Yun,et al.  WLC34-1: A Simple Congestion-Resilient Link Adaptation Algorithm for IEEE 802.11 WLANs , 2006, IEEE Globecom 2006.

[12]  A. Girotra,et al.  Performance Analysis of the IEEE 802 . 11 Distributed Coordination Function , 2005 .

[13]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[14]  Norman Abramson,et al.  The ALOHA System-Another Alternative for Computer Communications , 1899 .

[15]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[16]  Jie Zhang,et al.  Using Incompletely Cooperative Game Theory in Mobile Ad Hoc Networks , 2007, 2007 IEEE International Conference on Communications.

[17]  Leo Monteban,et al.  WaveLAN®-II: A high-performance wireless LAN for the unlicensed band , 1997, Bell Labs Technical Journal.

[18]  David Malone,et al.  MAC Layer Channel Quality Measurement in 802.11 , 2007, IEEE Communications Letters.