Analysis of Mitochondrial and Nuclear DNA Markers in Old Museum Sturgeons Yield Insights About the Species Existing in Western Europe: A. sturio, A. naccarii and A. oxyrinchus

[1]  F. Rodríguez,et al.  Biology, conservation and sustainable development of sturgeons , 2009 .

[2]  P. Williot,et al.  Acipenser sturio Recovery Research Actions in France , 2009 .

[3]  S. Wuertz,et al.  Prerequisites for the Restoration of the European Atlantic Sturgeon, Acipenser sturio and the Baltic Sturgeon (A. oxyrinchus × A. sturio) in Germany , 2009 .

[4]  M. Garrido-Ramos,et al.  Comparison of karyotypes of Acipenser oxyrinchus and A. sturio by chromosome banding and fluorescent in situ hybridization , 2008, Genetica.

[5]  R. DeSalle,et al.  The enigmatic Caspian Sea Russian sturgeon: How many cryptic forms does it contain? , 2005 .

[6]  A. Ludwig,et al.  Genomic organization and evolution of the 5S ribosomal DNA in the ancient fish sturgeon. , 2005, Genome.

[7]  H. T. Stalker,et al.  Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. , 2005, Genome.

[8]  A. Ludwig,et al.  Evolution of ancient satellite DNAs in sturgeon genomes. , 2004, Gene.

[9]  M. Garrido-Ramos,et al.  Genetic Identification of Western Mediterranean Sturgeons and its Implication for Conservation , 2004, Conservation Genetics.

[10]  M. Garrido-Ramos,et al.  Phylogenetic Relationships of the Sparidae Family (Pisces, Perciformes) Inferred from Satellite‐DNA , 2004 .

[11]  L. Bachmann,et al.  The pvB370 BamHI satellite DNA family of the Drosophila virilis group and its evolutionary relation to mobile dispersed genetic pDv elements , 1995, Journal of Molecular Evolution.

[12]  Ú. Árnason,et al.  Evolution of the common cetacean highly repetitive DNA component and the systematic position of Orcaella brevirostris , 1992, Journal of Molecular Evolution.

[13]  A. Beaumont,et al.  Genetics and evolution of aquatic organisms , 2004, Reviews in Fish Biology and Fisheries.

[14]  M. Garrido-Ramos,et al.  Chromosomal location and evolution of a satellite DNA family in seven sturgeon species , 2004, Chromosome Research.

[15]  A. Ludwig,et al.  Nonconcordant evolutionary history of maternal and paternal lineages in Adriatic sturgeon , 2003, Molecular ecology.

[16]  F. Fontana A cytogenetic approach to the study of taxonomy and evolution in sturgeons , 2002 .

[17]  M. Plohl,et al.  Variation in satellite DNA profiles—causes and effects , 2002, The EMBO journal.

[18]  A. Ludwig,et al.  Fish populations: When the American sea sturgeon swam east , 2002, Nature.

[19]  P. Fuerst,et al.  Evidence for a slowed rate of molecular evolution in the order acipenseriformes. , 2002, Molecular biology and evolution.

[20]  R. DeSalle,et al.  Molecular Phylogeny of Acipenseridae: Nonmonophylyof Scaphirhynchinae , 2002, Copeia.

[21]  M. Plohl,et al.  Sequence of PRAT Satellite DNA ``Frozen'' in Some Coleopteran Species , 2002, Journal of Molecular Evolution.

[22]  M. Garrido-Ramos,et al.  The molecular phylogeny of the Sparidae (Pisces, Perciformes) based on two satellite DNA families , 2001, Heredity.

[23]  P. Berni,et al.  Sturgeon farming in Western Europe: recent developments and perspectives , 2001 .

[24]  A. Ludwig,et al.  Genome duplication events and functional reduction of ploidy levels in sturgeon (Acipenser, Huso and Scaphirhynchus). , 2001, Genetics.

[25]  M. Garrido-Ramos,et al.  Slow rates of evolution and sequence homogenization in an ancient satellite DNA family of sturgeons. , 2001, Molecular biology and evolution.

[26]  B. May,et al.  A fixed allele at microsatellite locus LS-39 exhibiting species-specificity for the black caviar producer Acipenser stellatus , 2001 .

[27]  Antonio Gil Olcina,et al.  Nuestro porvenir climático: ¿un escenario de aridez? , 2001 .

[28]  Manuel A. Garrido-Ramos,et al.  Caracterización genética de Acipenser sturio L., 1758 con relación a otras especies de esturión por medio de ADN satélite , 2001 .

[29]  V. J. Birstein,et al.  Análisis molecular de Acipenser sturio L., 1758 y Acipenser oxyrinchus Mitchill, 1815: una revisión , 2001 .

[30]  M. Plohl,et al.  Comparative study of satellite sequences and phylogeny of five species from the genus Palorus (Insecta, Coleoptera). , 2000, Genome.

[31]  P. Fuerst,et al.  Phylogenetic relationships of the North American sturgeons (order Acipenseriformes) based on mitochondrial DNA sequences. , 2000, Molecular phylogenetics and evolution.

[32]  R. Herrán,et al.  Genetic characterization of Acipenser sturio L., 1758 in relation to other sturgeon species using satellite DNA , 2000 .

[33]  A. Almodóvar,et al.  Resultados preliminares de la caracterización del esturión de la península Ibérica mediante el análisis del gen citocromo b , 2000 .

[34]  J. G. Abascal,et al.  Preliminary results from characterization of the Iberian Peninsula sturgeon based on analysis of the mtDNA cytochrome b , 2000 .

[35]  P. A. Rincón Supuesta evidencia morfométrica de la presencia de Acipenser naccarii Bonaparte, 1836 en ríos ibéricos, o por qué la alometría ontogénica necesita un tratamiento adecuado , 2000 .

[36]  P. Doukakis,et al.  Molecular analysis of Acipenser sturio L., 1758 and Acipenser oxyrinchus Mitchill, 1815: A review , 2000 .

[37]  A. Ludwig,et al.  Genetic analyses of archival specimens of the Atlantic sturgeon Acipenser sturio L., 1758 , 2000 .

[38]  R. McDowall Different kinds of diadromy: Different kinds of conservation problems , 1999 .

[39]  A. P. Martin,et al.  Substitution rates of organelle and nuclear genes in sharks: implicating metabolic rate (again). , 1999, Molecular biology and evolution.

[40]  M. Garrido-Ramos,et al.  Evolution of centromeric satellite DNA and its use in phylogenetic studies of the Sparidae family (Pisces, Perciformes). , 1999, Molecular phylogenetics and evolution.

[41]  R. DeSalle,et al.  Population Aggregation Analysis of Three Caviar‐Producing Species of Sturgeons and Implications for the Species Identification of Black Caviar , 1998 .

[42]  T. Dick,et al.  The historical biogeography of sturgeons (Osteichthyes: Acipenseridae): a synthesis of phylogenetics, palaeontology and palaeogeography , 1998 .

[43]  A. Ludwig,et al.  Comparison of mitochondrial DNA sequences between the European and the Adriatic sturgeon , 1998 .

[44]  Carol A. Stepien,et al.  Molecular systematics of fishes , 1998 .

[45]  R. DeSalle,et al.  Molecular phylogeny of Acipenserinae. , 1998, Molecular phylogenetics and evolution.

[46]  M. Soriguer,et al.  Morphometric and genetic analysis as proof of the existence of two sturgeon species in the Guadalquivir river , 1997 .

[47]  Carol A. Stepien,et al.  CHAPTER 1 – Molecules and Morphology in Studies of Fish Evolution , 1997 .

[48]  G. Hewitt,et al.  470 million years of conservation of microsatellite loci among fish species , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[49]  J. Elder,et al.  Concerted Evolution of Repetitive DNA Sequences in Eukaryotes , 1995, The Quarterly Review of Biology.

[50]  W. Davidson,et al.  Distribution of Satellite DNA Sequences Isolated from Arctic Char, Salvelinus alpinus, in the Genus Salvelinus , 1994 .

[51]  I. Kornfield,et al.  The utility of SATA satellite DNA sequences for inferring phylogenetic relationships among the three major genera of tilapiine cichlid fishes. , 1994, Molecular phylogenetics and evolution.

[52]  J. Elder,et al.  Concerted evolution at the population level: pupfish HindIII satellite DNA sequences. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[53]  R. Baker,et al.  Molecular phylogenetics of Stenodermatini bat genera: congruence of data from nuclear and mitochondrial DNA. , 1993, Molecular biology and evolution.

[54]  N. Okada,et al.  Determination of the phylogenetic relationships among Pacific salmonids by using short interspersed elements (SINEs) as temporal landmarks of evolution. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Ú. Árnason,et al.  Mysticete (baleen whale) relationships based upon the sequence of the common cetacean DNA satellite. , 1992, Molecular biology and evolution.

[56]  Andrew P. Martin,et al.  Rates of mitochondrial DNA evolution in sharks are slow compared with mammals , 1992, Nature.

[57]  D. Schweizer,et al.  A model for heterochromatin dispersion and the evolution of C-band patterns , 1987 .

[58]  Ú. Árnason,et al.  Pinniped phylogeny enlightened by molecular hybridizations using highly repetitive DNA , 1986 .

[59]  G. Dover Molecular drive in multigene families: How biological novelties arise, spread and are assimilated , 1986 .

[60]  T. Ohta,et al.  The cohesive population genetics of molecular drive. , 1984, Genetics.