Mean-shift background image modelling

Background modelling is widely used in computer vision for the detection of foreground objects in a frame sequence. The more accurate the background model, the more correct is the detection of the foreground objects. In this paper, we present an approach to background modelling based on a mean-shift procedure. The mean shift vector convergence properties enable the system to achieve reliable background modelling. In addition, histogram-based computation and the new concept of local basins of attraction allow us to meet the stringent real-time requirements of video processing.

[1]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[2]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[4]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Dorin Comaniciu,et al.  An Algorithm for Data-Driven Bandwidth Selection , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[8]  Bohyung Han,et al.  SEQUENTIAL KERNEL DENSITY APPROXIMATION THROUGH MODE PROPAGATION: APPLICATIONS TO BACKGROUND MODELING , 2004 .

[9]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..