Mechanical properties of pineapple leaf fiber‐reinforced polyester composites
暂无分享,去创建一个
Pineapple leaf fiber (PALF) which is rich in cellulose, relatively inexpen- sive, and abundantly available has the potential for polymer reinforcement. The present study investigated the tensile, flexural, and impact behavior of PALF-reinforced polyes- ter composites as a function of fiber loading, fiber length, and fiber surface modification. The tensile strength and Young's modulus of the composites were found to increase with fiber content in accordance with the rule of mixtures. The elongation at break of the composites exhibits an increase by the introduction of fiber. The mechanical proper- ties are optimum at a fiber length of 30 mm. The flexural stiffness and flexural strength of the composites with a 30% fiber weight fraction are 2.76 GPa and 80.2 MPa, respec- tively. The specific flexural stiffness of the composite is about 2.3 times greater than that of neat polyester resin. The work of fracture (impact strength) of the composite with 30% fiber content was found to be 24 kJ m 02 . Significant improvement in the tensile strength was observed for composites with silane A172-treated fibers. Scanning electron microscopic studies were carried out to understand the fiber-matrix adhesion, fiber breakage, and failure topography. The PALF polyester composites possess superior mechanical properties compared to other cellulose-based natural fiber composites. q 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1739-1748, 1997
[1] T. Murayama,et al. Dynamic mechanical analysis of polymeric material , 1978 .
[2] J. Ferry. Viscoelastic properties of polymers , 1961 .
[3] G. Dean,et al. The determination of dynamic properties of polymers and composites , 1978 .
[4] R. Landel,et al. Mechanical Properties of Polymers and Composites , 1993 .