Application of Time Reversal (TR) Technique to Ultra wideband (UWB) and multi antenna (MIMO) communication systems. (Application du retournement temporel (RT) aux systèmes de communications ultra large bande (ULB) et multi-antennes (MIMO))

In ultra wideband (UWB) systems, extremely narrow RF pulses are employed to communicate between transmitters and receivers. Because of their extremely wide bandwidth, UWB signals result in large number of resolvable multi-paths and thus reducing the interference caused by the superposition of these multi-paths. However, it also results in a complex receiver system. Time reversal (TR) is a transmission approach which permits to detect the received signal with simple receivers by shifting the complexity to the transmitter. The received signal in the TR scheme is very focused in time and spatial domains. Temporal and spatial focusing permit to reduce inter symbol interference and multi-user interference respectively. In this Ph.D. thesis, we investigate the TR UWB scheme and its application to high data rate communications. A validation of the TR scheme in the laboratory is performed with simulation, semi-measurement and measurement approaches. A parametric analysis of the TR is carried out with multiple antenna configurations (SISO, SIMO, MISO and MIMO). The results show that MIMO-TR outperforms all other configurations The robustness of the TR scheme is also studied in non stationary environments. The results suggest that if the channel maintains some partial correlation with the previous channel, TR can give a robust performance even if the total correlation of the channels is very low. Although higher bandwidths generally give better performance than the lower bandwidths, but the degradation in the performance with the variations in the channel is of the same magnitude Furthermore, TR scheme is investigated from the communication point of view. Experimental validations of a new modulation scheme and high data rate communication for TR UWB are performed for dense multipath propagation channels. It is shown that the BER performance in the indoor channel is better than the reverberation chamber. Furthermore, with the sub-band TR transmission approach, a sort of equalization is achieved which significantly improves the BER performance Finally, multi-user TR communication has been examined with modifications in the TR pre-filter. The modified TR scheme outperforms simple TR and TR with circular shift scheme, especially at higher number of simultaneous users. The results presented in this thesis suggest that the TR UWB scheme, which can easily be combined with the MIMO systems, is a promising and attractive transmission approach for future wireless local and personal area networks (WLAN & WPAN) and wireless streaming applications.

[1]  C. R. Johnson,et al.  RAKE reception for UWB communication systems with intersymbol interference , 2003, 2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications - SPAWC 2003 (IEEE Cat. No.03EX689).

[2]  Kyritsi,et al.  MISO time reversal and delay-spread compression for FWA channels at 5 GHz , 2004, IEEE Antennas and Wireless Propagation Letters.

[3]  C. Fowler,et al.  Assessment of ultra-wideband (UWB) technology , 1990, IEEE Aerospace and Electronic Systems Magazine.

[4]  Ali Khaleghi Measurement and Analysis of Ultra-Wideband Time Reversal for Indoor Propagation Channels , 2010, Wirel. Pers. Commun..

[5]  Mathias Fink,et al.  Acoustic source localization model using in-skull reverberation and time reversal , 2007 .

[6]  Ghaïs El Zein,et al.  Demonstration of Time-Reversal in Indoor Ultra-Wideband Communication: Time Domain Measurement , 2007, 2007 4th International Symposium on Wireless Communication Systems.

[7]  Ghaïs El Zein,et al.  Multiuser time reversal UWB communication system: A modified transmission approach , 2009, 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications.

[8]  Philippe Besnier,et al.  Time Reversal UWB Communication: Experimental Study for High Data Rates in Dense Multipath Propagation Channels , 2009, ICC 2009.

[9]  Andreas F. Molisch,et al.  Ultrawideband propagation channels-theory, measurement, and modeling , 2005, IEEE Transactions on Vehicular Technology.

[10]  P. Lawson,et al.  Federal Communications Commission , 2004, Bell Labs Technical Journal.

[11]  G. El Zein,et al.  Time domain measurements for a time reversal SIMO system in reverberation chamber and in an indoor environment , 2008, 2008 IEEE International Conference on Ultra-Wideband.

[12]  Fredrik Tufvesson,et al.  UWB channel measurements in an industrial environment , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[13]  Jeffrey R. Foerster The effects of multipath interference on the performance of UWB systems in an indoor wireless channel , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[14]  Moe Z. Win,et al.  The ultra-wide bandwidth indoor channel: from statistical model to simulations , 2002, IEEE J. Sel. Areas Commun..

[15]  Andreas Polydoros,et al.  LPI Detection of Frequency-Hopping Signals Using Autocorrelation Techniques , 1985, IEEE J. Sel. Areas Commun..

[16]  Larry J. Greenstein,et al.  UWB indoor delay profile model for residential and commercial environments , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[17]  Andreas F. Molisch,et al.  Channel models for ultrawideband personal area networks , 2003, IEEE Wireless Communications.

[18]  A. Molisch,et al.  Statistical analysis of the UWB channel in an industrial environment , 2004, IEEE 60th Vehicular Technology Conference, 2004. VTC2004-Fall. 2004.

[19]  Ghaïs El Zein,et al.  Performance Enhancement of Multiuser Time Reversal UWB Communication System , 2007, 2007 4th International Symposium on Wireless Communication Systems.

[20]  Ali Khaleghi,et al.  DIVERSITY TECHNIQUES WITH PARALLEL DIPOLE ANTENNAS: RADIATION PATTERN ANALYSIS , 2006 .

[21]  William S. Hodgkiss,et al.  An initial demonstration of underwater acoustic communication using time reversal , 2002 .

[22]  W. Turin,et al.  Autoregressive modeling of an indoor UWB channel , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[23]  Moe Z. Win,et al.  Impulse radio: how it works , 1998, IEEE Communications Letters.

[24]  Ghaïs El Zein,et al.  Effects of Time Variant Channel on a Time Reversal UWB System , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[25]  Walter Hirt,et al.  Composite Reconfigurable Wireless Networks: the Eu R&d Path towards 4g , 2022 .

[26]  Chenming Zhou,et al.  Channel reciprocity and time-reversed propagation for ultra-wideband communications , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[27]  Shin Heu,et al.  Experimental Validation of , 1991 .

[28]  Aawatif Menouni Hayar,et al.  Channel models for ultra-wideband communications: an overview , 2005 .

[29]  Vincent K. N. Lau,et al.  The Mobile Radio Propagation Channel , 2007 .

[30]  Hung Tuan Nguyen,et al.  The potential use of time reversal techniques in multiple element antenna systems , 2005, IEEE Communications Letters.

[31]  R.M. Buehrer,et al.  A new 2-cluster model for indoor UWB channel measurements , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[32]  C. Chong,et al.  A modified S-V clustering channel model for the UWB indoor residential environment , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[33]  R. Michael Buehrer,et al.  Ultra-Wideband Wireless Systems , 2005 .

[34]  Robert A. Scholtz,et al.  Multiple access with time-hopping impulse modulation , 1993, Proceedings of MILCOM '93 - IEEE Military Communications Conference.

[35]  G. Lerosey,et al.  Time reversal of wideband microwaves , 2006 .

[36]  Ali Khaleghi,et al.  Time Reversal UWB Communication System: A Novel Modulation Scheme with Experimental Validation , 2010, EURASIP J. Wirel. Commun. Netw..

[37]  Craig K. Rushforth Transmitted-reference techniques for random or unknown channels , 1964, IEEE Trans. Inf. Theory.

[38]  V. Srinivasa Somayazulu,et al.  RAKE performance for a pulse based UWB system in a realistic UWB indoor channel , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[39]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[40]  Terence W. Barrett,et al.  History of UltraWideBand (UWB) Radar & Communications: Pioneers and Innovators , 2000 .

[41]  Moe Z. Win,et al.  A statistical model for the UWB indoor channel , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[42]  M. Fink,et al.  Time Reversal of Ultrasonic Fields-Part I : Basic Principles , 2000 .

[43]  Arogyaswami Paulraj,et al.  Application of time-reversal with MMSE equalizer to UWB communications , 2004, IEEE Global Telecommunications Conference, 2004. GLOBECOM '04..

[44]  B. Uguen,et al.  An impulse radio asynchronous transceiver for high data rates , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[45]  Ghaïs El Zein,et al.  Time-Reversal in indoor ultra-wideband communication : experimental results , 2008 .

[46]  Tomoaki Ohtsuki,et al.  Pre-RAKE diversity combining for UWB systems in IEEE 802.15 UWB multipath channel , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[47]  G.F. Ross,et al.  Time-domain electromagnetics and its applications , 1978, Proceedings of the IEEE.

[48]  James D. Taylor,et al.  Introduction to Ultra-Wideband Radar Systems , 1995 .

[49]  P. Drummond,et al.  Time reversed acoustics , 1997 .

[50]  A.,et al.  The Origins of Spread-Spectrum Communications , 2000 .

[51]  W. Hirt,et al.  Robust noncoherent receiver exploiting UWB channel properties , 2004, 2004 International Workshop on Ultra Wideband Systems Joint with Conference on Ultra Wideband Systems and Technologies. Joint UWBST & IWUWBS 2004 (IEEE Cat. No.04EX812).

[52]  Jeff Foerster,et al.  Ultra-Wideband Technology for Short- or Medium-Range Wireless Communications , 2001 .

[53]  Robert C. Qiu,et al.  UWB MISO Time Reversal With Energy Detector Receiver Over ISI Channels , 2007, 2007 4th IEEE Consumer Communications and Networking Conference.

[54]  Mathias Fink,et al.  Time-reversal acoustics in complex environments , 2006 .

[55]  Hung Tuan Nguyen,et al.  A Time Reversal Transmission Approach for Multiuser UWB Communications , 2006, IEEE Transactions on Antennas and Propagation.

[56]  Ghaïs El Zein,et al.  Miroirs à retournement temporel électromagnétiques pour les communications , 2007 .

[57]  R. Hoctor,et al.  Delay-hopped transmitted-reference RF communications , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[58]  G. El Zein,et al.  Signal Frequency and Bandwidth Effects on the Performance of UWB Time-Reversal Technique , 2007, 2007 Loughborough Antennas and Propagation Conference.

[59]  A. Molisch,et al.  IEEE 802.15.4a channel model-final report , 2004 .

[60]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[61]  Chenming Zhou,et al.  Time Reversal With MISO for Ultrawideband Communications: Experimental Results , 2006, IEEE Antennas and Wireless Propagation Letters.

[62]  Wayne E. Stark,et al.  Performance of ultra-wideband communications with suboptimal receivers in multipath channels , 2002, IEEE J. Sel. Areas Commun..

[63]  Ghaïs El Zein,et al.  Retournement temporel en ULB: étude comparative par mesures pour des configurations multi-antennes , 2010 .

[64]  Nan Guo,et al.  Demonstrating Time Reversal in Ultra-wideband Communications Using Time Domain Measurements , 2005 .

[65]  J. Kunisch,et al.  Measurement results and modeling aspects for the UWB radio channel , 2002, 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No.02EX580).

[66]  J. Barney,et al.  Commercialization of an ultra wideband precision asset location system , 2003, IEEE Conference on Ultra Wideband Systems and Technologies, 2003.

[67]  Ghaïs El Zein,et al.  Procédé de modulation pour les communications sans fil à retournement temporel , 2008 .

[68]  Anuj Batra,et al.  Multi-band OFDM Physical Layer Proposal , 2003 .

[69]  K. Siwiak,et al.  A path link model for ultra wide band pulse transmissions , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[70]  D. Cox,et al.  Distributions of multipath delay spread and average excess delay for 910-MHz urban mobile radio paths , 1975 .

[71]  Masao Nakagawa,et al.  Pre-Rake performance for pulse based UWB system in a standardized UWB short-range channel , 2004, 2004 IEEE Wireless Communications and Networking Conference (IEEE Cat. No.04TH8733).

[72]  Ghaïs El Zein,et al.  Les Techniques Multi-Antennes pour les Réseaux Sans Fil , 2004 .

[73]  Patrick Claus F. Eggers,et al.  MISO time reversal and time compression , 2004 .

[74]  Arnaud Derode NUMERICAL AND EXPERIMENTAL TIME-REVERSAL OF ACOUSTIC WAVES IN RANDOM MEDIA , 2001 .

[75]  Annamalai Annamalai,et al.  Improving the range of ultrawideband transmission using RAKE receivers , 2003, 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No.03CH37484).

[76]  H. Hashemi,et al.  The indoor radio propagation channel , 1993, Proc. IEEE.

[77]  Moe Z. Win,et al.  Impulse radio multipath characteristics and diversity reception , 1998, ICC '98. 1998 IEEE International Conference on Communications. Conference Record. Affiliated with SUPERCOMM'98 (Cat. No.98CH36220).

[78]  Desmond P. Taylor,et al.  A Statistical Model for Indoor Multipath Propagation , 2007 .