Defining equations of modular curves

We obtain defining equations of modular curves X0(N), X1(N), and X(N) by explicitly constructing modular functions using generalized Dedekind eta functions. As applications, we describe a method of obtaining a basis for the space of cusp forms of weight 2 on a congruence subgroup. We also use our model of X0(37) to find explicit modular parameterization of rational elliptic curves of conductor 37.

[1]  Josep González i Rovira Equations of hyperelliptic modular curves , 1991 .

[2]  Richard P. Lewis,et al.  New Ramanujan-Kolberg type partition identities , 2002 .

[3]  N. Ishida Generators and defining equation of the modular function field of the group Γ 1 ( N ) , 2022 .

[4]  M. A. Reichert,et al.  Explicit determination of nontrivial torsion structures of elliptic curves over quadratic number fields , 1986 .

[5]  C. Hoffmann Algebraic curves , 1988 .

[6]  N. Murabayashi On normal forms of modular curves of genus 2 , 1992 .

[7]  Yifan Yang Transformation Formulas for Generalized Dedekind Eta Functions , 2004 .

[8]  J. Cremona Algorithms for Modular Elliptic Curves , 1992 .

[9]  Henri Darmon Note on a polynomial of Emma Lehmer , 1991 .

[10]  M. A. Kenku On the Modular Curves X0(125), X1(25), X1(49) , 1981 .

[11]  志村 五郎,et al.  Introduction to the arithmetic theory of automorphic functions , 1971 .

[12]  Mahoro Shimura Defining Equations of Modular Curves $X_0(N)$ , 1995 .

[13]  N. Fine ON A SYSTEM OF MODULAR FUNCTIONS CONNECTED WITH THE RAMANUJAN IDENTITIES , 1956 .

[14]  H. Swinnerton-Dyer,et al.  Ellitpic curves and modular functions , 1975 .

[15]  Loïc Merel,et al.  Universal Fourier expansions of modular forms , 1994 .

[16]  Robin Hartshorne,et al.  Algebraic geometry , 1977, Graduate texts in mathematics.

[17]  Loïc Merel Opérateurs de Hecke pour $\Gamma _0(N)$ et fractions continues , 1991 .

[18]  Steven D. Galbraith,et al.  Equations for modular curves , 1996 .

[19]  M. Newman Construction and Application of a Class of Modular Functions (II) , 1957 .