Thermal and ablation properties of a high-entropy metal diboride: (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)B[formula omitted]

The fabrication of high-entropy ceramics has recently expanded the pool of ultra-high temperature ceramics (UHTCs). To properly assess the suitability of these new types of ceramics for advanced aerospace applications, it is of vital interest to extend the characterizations beyond ambient conditions. Here, we have studied the thermal and ablation properties of a high-entropy diboride (HEB): (Hf0.2Zr0.2Ti0.2Ta0.2Nb0.2)B2. The thermal conductivity of the HEB increases as a function of temperature and becomes comparable to that of other UHTCs at high temperatures. The electron dominated thermal conductivity of HEB is also nearly isotropic along different crystallographic orientations. The temperature-dependent volumetric heat capacity of HEB is measured and found to remain in agreement with that of ZrB2. Additionally, both material systems possess nearly the same ablation resistance. The multitudes of characterizations performed in this study establishes the suitability of HEB for high thermal load applications in extreme environments.

[1]  J. Monnier,et al.  New perspectives and insights into direct epoxidation of propylene using O2 and silver-based catalysts , 2022, Applied Catalysis A: General.

[2]  S. Pantelides,et al.  Direct Visualization of Localized Vibrations at Complex Grain Boundaries , 2022, Advanced materials.

[3]  Peter M. Litwin,et al.  Transport Properties of Few-Layer NbSe2: from Electronic Structure to Thermoelectric Properties , 2022, Materials Today Physics.

[4]  W. Haider,et al.  Enhancing controlled and uniform degradation of Fe by incorporating Mg and Zn aimed for bio-degradable material applications , 2022, Materials Chemistry and Physics.

[5]  L. Martin,et al.  Observation of solid-state bidirectional thermal conductivity switching in antiferroelectric lead zirconate (PbZrO3) , 2022, Nature Communications.

[6]  T. Beechem,et al.  Emergent interface vibrational structure of oxide superlattices , 2022, Nature.

[7]  M. Goorsky,et al.  High thermal conductivity and thermal boundary conductance of homoepitaxially grown gallium nitride (GaN) thin films , 2021, Physical Review Materials.

[8]  K. Edalati,et al.  High-entropy ceramics: Review of principles, production and applications , 2021, Materials Science and Engineering: R: Reports.

[9]  Taeseup Song,et al.  Blocking of radiative thermal conduction in Zn2+-Incorporated high-entropy A2B2O7 fluorite oxides , 2021, Ceramics International.

[10]  G. Hilmas,et al.  Thermal properties of ZrB2-TiB2 solid solutions , 2021, Journal of the European Ceramic Society.

[11]  M. Goorsky,et al.  High In-Plane Thermal Conductivity of Aluminum Nitride Thin Films. , 2021, ACS nano.

[12]  Yanchun Zhou,et al.  High-entropy ceramics: Present status, challenges, and a look forward , 2021, Journal of Advanced Ceramics.

[13]  Y. Koh,et al.  Thermal conductivity measurements of sub-surface buried substrates by steady-state thermoreflectance. , 2021, The Review of scientific instruments.

[14]  M. Zebarjadi,et al.  Thermomagnetic properties of Bi2Te3 single crystal in the temperature range from 55 K to 380 K. , 2021, Physical review materials.

[15]  O. Mirzaee,et al.  Effect of HfB2 and WC additives on the ablation resistance of ZrB2–SiC composite coating manufactured by SPS , 2020 .

[16]  Christina M. Rost,et al.  Electron and phonon thermal conductivity in high entropy carbides with variable carbon content , 2020 .

[17]  G. Hilmas,et al.  Effects of Ti, Y, and Hf additions on the thermal properties of ZrB2 , 2020 .

[18]  M. Zebarjadi,et al.  The thermal and mechanical properties of hafnium orthosilicate: Experiments and first-principles calculations , 2020 .

[19]  Tyler J. Harrington,et al.  Dual-phase high-entropy ultra-high temperature ceramics , 2020 .

[20]  P. Hopkins,et al.  Anisotropic thermal conductivity tensor of β-Y2Si2O7 for orientational control of heat flow on micrometer scales , 2020 .

[21]  Tyler J. Harrington,et al.  Thermal conductivity and hardness of three single-phase high-entropy metal diborides fabricated by borocarbothermal reduction and spark plasma sintering , 2020 .

[22]  P. Hopkins,et al.  Local thermal conductivity measurements to determine the fraction of α-cristobalite in thermally grown oxides for aerospace applications , 2020 .

[23]  Yanchun Zhou,et al.  Theoretical predictions on intrinsic lattice thermal conductivity of ZrB2 , 2019, Journal of the European Ceramic Society.

[24]  D. Vinnik,et al.  High-entropy oxide phases with magnetoplumbite structure , 2019, Ceramics International.

[25]  G. Goller,et al.  Effects of SiC and SiC-GNP additions on the mechanical properties and oxidation behavior of NbB2 , 2019, Journal of Asian Ceramic Societies.

[26]  Tyler J. Harrington,et al.  Phase stability and mechanical properties of novel high entropy transition metal carbides , 2019, Acta Materialia.

[27]  Houzheng Wu,et al.  A high entropy silicide by reactive spark plasma sintering , 2019, Journal of Advanced Ceramics.

[28]  P. Hopkins,et al.  A steady-state thermoreflectance method to measure thermal conductivity. , 2019, The Review of scientific instruments.

[29]  Jinyong Zhang,et al.  High-entropy carbide: A novel class of multicomponent ceramics , 2018, Ceramics International.

[30]  Cormac Toher,et al.  High-entropy high-hardness metal carbides discovered by entropy descriptors , 2018, Nature Communications.

[31]  Christina M. Rost,et al.  Charge‐Induced Disorder Controls the Thermal Conductivity of Entropy‐Stabilized Oxides , 2018, Advanced materials.

[32]  M. Reece,et al.  Data-Driven Design of Ecofriendly Thermoelectric High-Entropy Sulfides. , 2018, Inorganic chemistry.

[33]  Tyler J. Harrington,et al.  High-entropy fluorite oxides , 2018, Journal of the European Ceramic Society.

[34]  Ronggui Yang,et al.  Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials , 2018, Journal of Applied Physics.

[35]  Jiaqiang Yan,et al.  Single-crystal high entropy perovskite oxide epitaxial films , 2018, Physical Review Materials.

[36]  S. Grasso,et al.  Processing and Properties of High-Entropy Ultra-High Temperature Carbides , 2018, Scientific Reports.

[37]  Jun Hu,et al.  Mechanochemical‐Assisted Synthesis of High‐Entropy Metal Nitride via a Soft Urea Strategy , 2018, Advanced materials.

[38]  M. Nastasi,et al.  (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramics with low thermal conductivity , 2018, Journal of the American Ceramic Society.

[39]  Manfred Martin,et al.  Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni) 3 O 4 high entropy oxide characterized by spinel structure , 2018 .

[40]  D. M. Bubb,et al.  Energy confinement and thermal boundary conductance effects on short-pulsed thermal ablation thresholds in thin films , 2017 .

[41]  C. Kübel,et al.  Multicomponent equiatomic rare earth oxides , 2017 .

[42]  G. Hilmas,et al.  Ultra-high temperature ceramics: Materials for extreme environments , 2017 .

[43]  Tyler J. Harrington,et al.  High-Entropy Metal Diborides: A New Class of High-Entropy Materials and a New Type of Ultrahigh Temperature Ceramics , 2016, Scientific Reports.

[44]  H. Fujiwara,et al.  Breaking network connectivity leads to ultralow thermal conductivities in fully dense amorphous solids , 2016 .

[45]  Nitin P. Padture,et al.  Advanced structural ceramics in aerospace propulsion. , 2016, Nature materials.

[46]  S. Franger,et al.  Room temperature lithium superionic conductivity in high entropy oxides , 2016 .

[47]  S. Franger,et al.  Colossal dielectric constant in high entropy oxides , 2016, 1602.07842.

[48]  G. Hilmas,et al.  Thermal Properties of Hf‐Doped ZrB2 Ceramics , 2015 .

[49]  D. M. Bubb,et al.  Size and polydispersity trends found in gold nanoparticles synthesized by laser ablation in liquids. , 2015, Physical chemistry chemical physics : PCCP.

[50]  Yanchun Zhou,et al.  General Trends in Electronic Structure, Stability, Chemical Bonding and Mechanical Properties of Ultrahigh Temperature Ceramics TMB2 (TM = transition metal) , 2015 .

[51]  Wolfgang Rudolph,et al.  Generic incubation law for laser damage and ablation thresholds , 2015 .

[52]  D. Cahill,et al.  Pump-probe measurements of the thermal conductivity tensor for materials lacking in-plane symmetry. , 2014, The Review of scientific instruments.

[53]  William G. Fahrenholtz,et al.  Ultra-high temperature ceramics : materials for extreme environment applications , 2014 .

[54]  G. Hilmas,et al.  Thermal Conductivity of ZrB2 and HfB2 , 2014 .

[55]  J. Yeh,et al.  High-Entropy Alloys: A Critical Review , 2014 .

[56]  William G. Fahrenholtz,et al.  Zirconium Diboride with High Thermal Conductivity , 2014 .

[57]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[58]  K. Sairam,et al.  Reaction spark plasma sintering of niobium diboride , 2014 .

[59]  V. Braic,et al.  Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings , 2012 .

[60]  A. Jankowiak,et al.  Ultra High Temperature Ceramics : Densification, Properties and Thermal Stability. , 2011 .

[61]  D. Pejaković,et al.  Thermal and Electrical Transport Properties of Spark Plasma‐Sintered HfB2 and ZrB2 Ceramics , 2011 .

[62]  J. Zou,et al.  Textured and platelet-reinforced ZrB 2 -based ultra-high-temperature ceramics , 2011 .

[63]  Sylvia M. Johnson,et al.  Thermal Conductivity Characterization of Hafnium Diboride‐Based Ultra‐High‐Temperature Ceramics , 2008 .

[64]  Ke Yang,et al.  Ablation behaviors of ultra-high temperature ceramic composites , 2007 .

[65]  William G. Fahrenholtz,et al.  Refractory Diborides of Zirconium and Hafnium , 2007 .

[66]  D. Cahill Analysis of heat flow in layered structures for time-domain thermoreflectance , 2004 .

[67]  H. Matsunami,et al.  Zirconium Diboride (0001) as an Electrically Conductive Lattice-Matched Substrate for Gallium Nitride , 2001 .

[68]  B. Luther-Davies,et al.  Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics , 2001, physics/0102046.

[69]  R. Munro Material Properties of Titanium Diboride , 2000, Journal of research of the National Institute of Standards and Technology.

[70]  T. Osswald,et al.  Materials Science of Polymers for Engineers , 1995 .

[71]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[72]  Michael F. Becker,et al.  Laser-induced damage on single-crystal metal surfaces , 1988 .

[73]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[74]  Tie-jun Wang,et al.  Advances in oxidation and ablation resistance of high and ultra-high temperature ceramics modified or coated carbon/carbon composites , 2018 .

[75]  Tyler J. Harrington,et al.  A new class of high-entropy perovskite oxides , 2018 .

[76]  S. C. Saxena,et al.  Thermophysical Properties of Matter - the TPRC Data Series. Volume 11. Viscosity , 1975 .

[77]  A. Mendelsohn THE EFFECT OF HEAT LOSS ON THE FLASH METHOD OF DETERMINING THERMAL DIFFUSIVITY , 1963 .