Permutation codes and steganography

We show that Slepian's Variant I permutation codes implement firstorder perfect steganography (i.e., histogram-preserving steganography). We give theoretical expressions for the embedding distortion, embedding rate and embedding efficiency of permutation codes in steganography, which demonstrate that these codes conform to prior analyses of the properties of capacity-achieving perfect stegosystems with a passive warden. We also propose a modification of adaptive arithmetic coding that near optimally implements permutation coding with a low complexity, confirming all our theoretical predictions. Finally we discuss how to control the embedding distortion. Permutation coding turns out to be akin to Sallee's model-based steganography, and to supersede both this method and LSB matching.

[1]  Peter Harremoës,et al.  Inequalities between entropy and index of coincidence derived from information diagrams , 2001, IEEE Trans. Inf. Theory.

[2]  Rainer Böhme,et al.  Breaking Cauchy Model-Based JPEG Steganography with First Order Statistics , 2004, ESORICS.

[3]  Pedro Comesaña Alfaro,et al.  On the capacity of stegosystems , 2007, MM&Sec.

[4]  Félix Balado,et al.  Capacity of DNA Data Embedding Under Substitution Mutations , 2011, IEEE Transactions on Information Theory.

[5]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[6]  Toby Berger,et al.  Permutation codes for sources , 1972, IEEE Trans. Inf. Theory.

[7]  David Haughton,et al.  Gene tagging and the data hiding rate , 2012 .

[8]  J. Vitter,et al.  Practical Implementations of Arithmetic Coding , 1991 .

[9]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[10]  Toby Sharp,et al.  An Implementation of Key-Based Digital Signal Steganography , 2001, Information Hiding.

[11]  Pengwei Hao,et al.  Reversible integer KLT for progressive-to-lossless compression of multiple component images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[12]  D. Slepian Permutation Modulation , 1965, Encyclopedia of Wireless Networks.

[13]  Thomas Mittelholzer,et al.  An Information-Theoretic Approach to Steganography and Watermarking , 1999, Information Hiding.

[14]  Andreas Westfeld,et al.  F5-A Steganographic Algorithm , 2001, Information Hiding.

[15]  L. Brillouin,et al.  Science and information theory , 1956 .

[16]  Andrew D. Ker Steganalysis of LSB matching in grayscale images , 2005, IEEE Signal Processing Letters.

[17]  Phil Sallee,et al.  Model-Based Steganography , 2003, IWDW.

[18]  Christian Cachin,et al.  An information-theoretic model for steganography , 1998, Inf. Comput..