Higher-order Cahn–Hilliard equations with dynamic boundary conditions

Abstract Our aim in this paper is to study the well-posedness and the dissipativity of higher-order Cahn–Hilliard equations with dynamic boundary conditions. More precisely, we prove the existence and uniqueness of solutions and the existence of the global attractor.

[1]  Giulio Schimperna,et al.  On a Class of Cahn-Hilliard Models with Nonlinear Diffusion , 2011, SIAM J. Math. Anal..

[2]  Irena Pawłow,et al.  A sixth order Cahn-Hilliard type equation arising in oil-water-surfactant mixtures , 2011 .

[3]  R. Chill,et al.  Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions , 2003 .

[4]  Gompper,et al.  Ginzburg-Landau theory of ternary amphiphilic systems. I. Gaussian interface fluctuations. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Alain Miranville,et al.  Sixth-order Cahn–Hilliard equations with singular nonlinear terms , 2015 .

[6]  Jie Shen,et al.  Efficient energy stable schemes with spectral discretization in space for anisotropic , 2013 .

[7]  Peter Galenko,et al.  Phase-field-crystal and Swift-Hohenberg equations with fast dynamics. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Sergey Zelik,et al.  The Cahn-Hilliard Equation with Logarithmic Potentials , 2011 .

[9]  I. Pawlow,et al.  On a class of sixth order viscous Cahn-Hilliard type equations , 2012 .

[10]  Alain Miranville,et al.  Sixth‐order Cahn–Hilliard systems with dynamic boundary conditions , 2015 .

[11]  Sergey Zelik,et al.  Chapter 3 Attractors for Dissipative Partial Differential Equations in Bounded and Unbounded Domains , 2008 .

[12]  Ciprian G. Gal,et al.  A Cahn–Hilliard model in bounded domains with permeable walls , 2006 .

[13]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[14]  Piotr Rybka,et al.  Global Weak Solutions to a Sixth Order Cahn-Hilliard Type Equation , 2012, SIAM J. Math. Anal..

[15]  Bernd Rinn,et al.  Phase separation in confined geometries: Solving the Cahn–Hilliard equation with generic boundary conditions , 2001 .

[16]  Morgan Pierre,et al.  A NUMERICAL ANALYSIS OF THE CAHN-HILLIARD EQUATION WITH DYNAMIC BOUNDARY CONDITIONS , 2010 .

[17]  P. Voorhees,et al.  Faceting of a growing crystal surface by surface diffusion. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Piotr Rybka,et al.  On a Higher Order Convective Cahn-Hilliard-Type Equation , 2012, SIAM J. Appl. Math..

[19]  Alain Miranville,et al.  On the phase-field-crystal model with logarithmic nonlinear terms , 2016 .

[20]  Madalina Petcu,et al.  A numerical analysis of the Cahn–Hilliard equation with non-permeable walls , 2014, Numerische Mathematik.

[21]  Gompper,et al.  Ginzburg-Landau theory of ternary amphiphilic systems. II. Monte Carlo simulations. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  R. Temam Infinite Dimensional Dynamical Systems in Mechanics and Physics Springer Verlag , 1993 .

[23]  H. Löwen,et al.  Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview , 2012, 1207.0257.

[24]  Alain Miranville,et al.  On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions , 2009 .

[25]  M. Grant,et al.  Diffusive atomistic dynamics of edge dislocations in two dimensions. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  I. Pawlow,et al.  A Cahn-Hilliard equation with singular diffusion , 2012, 1206.5604.

[27]  Maurizio Grasselli,et al.  Well-posedness and longtime behavior for the modified phase-field crystal equation , 2013 .

[28]  F. Otto,et al.  Upper Bounds on Coarsening Rates , 2002 .

[29]  Cheng Wang,et al.  Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation , 2009, J. Comput. Phys..

[30]  Philipp Maass,et al.  Time-dependent density functional theory and the kinetics of lattice gas systems in contact with a wall , 1998 .

[31]  Steven M. Wise,et al.  An Energy Stable and Convergent Finite-Difference Scheme for the Modified Phase Field Crystal Equation , 2011, SIAM J. Numer. Anal..

[32]  Axel Voigt,et al.  A new phase-field model for strongly anisotropic systems , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  Philipp Maass,et al.  Novel Surface Modes in Spinodal Decomposition , 1997 .

[34]  Philipp Maass,et al.  Diverging time and length scales of spinodal decomposition modes in thin films , 1998 .

[35]  Amy Novick-Cohen,et al.  Chapter 4 The Cahn–Hilliard Equation , 2008 .

[36]  Sergey Zelik,et al.  Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions , 2005 .

[37]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[38]  James S. Langer,et al.  Theory of spinodal decomposition in alloys , 1971 .

[39]  Alain Miranville,et al.  Asymptotic behavior of a sixth-order Cahn-Hilliard system , 2013 .

[40]  Thomas Wanner,et al.  Spinodal Decomposition for the¶Cahn-Hilliard Equation in Higher Dimensions:¶Nonlinear Dynamics , 2000 .

[41]  Flore Nabet Convergence of a finite-volume scheme for the Cahn–Hilliard equation with dynamic boundary conditions , 2016 .

[42]  Thomas Wanner,et al.  Spinodal Decomposition for the Cahn–Hilliard Equation in Higher Dimensions.¶Part I: Probability and Wavelength Estimate , 1998 .

[43]  Alain Miranville,et al.  A Cahn-Hilliard model in a domain with non-permeable walls , 2011 .

[44]  Joel Berry,et al.  Simulation of an atomistic dynamic field theory for monatomic liquids: freezing and glass formation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Stig Larsson,et al.  THE CAHN-HILLIARD EQUATION , 2007 .

[46]  John W. Cahn,et al.  On Spinodal Decomposition , 1961 .

[47]  A. Miranville,et al.  Higher-order models in phase separation , 2016 .

[48]  Jan Prüss,et al.  Convergence to steady states of solutions of the Cahn–Hilliard and Caginalp equations with dynamic boundary conditions , 2006 .

[49]  Alain Miranville,et al.  Long time behavior of the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions , 2010 .

[50]  Gunduz Caginalp,et al.  Anisotropic phase field equations of arbitrary order , 2010 .

[51]  Jan Prüss,et al.  Maximal regularity and asymptotic behavior of solutions for the Cahn–Hilliard equation with dynamic boundary conditions , 2006 .

[52]  Hao Wu,et al.  Robust exponential attractors for the modified phase-field crystal equation , 2013 .

[53]  Flore Nabet,et al.  An error estimate for a finite-volume scheme for the Cahn–Hilliard equation with dynamic boundary conditions , 2018, Numerische Mathematik.

[54]  Sergey Zelik,et al.  THE CAHN-HILLIARD EQUATION WITH SINGULAR POTENTIALS AND DYNAMIC BOUNDARY CONDITIONS , 2009, 0904.4023.

[55]  Cheng Wang,et al.  An Energy-Stable and Convergent Finite-Difference Scheme for the Phase Field Crystal Equation , 2009, SIAM J. Numer. Anal..

[56]  Hao-qing Wu,et al.  Convergence to Equilibrium for the Cahn-Hilliard Equation with Wentzell Boundary Condition , 2004, 0705.3362.

[57]  P. Gennes Dynamics of fluctuations and spinodal decomposition in polymer blends , 1980 .