Dot-Shaped Range-Angle Beampattern Synthesis for Frequency Diverse Array

The frequency diverse array (FDA) using linearly increasing frequency increment yields an “S”-shape range-angle beampattern, which provides the potential capability to suppress range-dependent interferences. However, the FDA transmit beampattern is coupled in range and angle dimensions, which may degrade the output signal-to-interference-plus-noise ratio performance. In this letter, we propose a symmetrical FDA beampattern synthesis approach using multicarrier frequency increments and convex optimization, named convex-multilog-FDA, to achieve dot-shaped transmit beampatterns. Both single-dot and multi-dot shaped beampatterns can be synthesized. Numerical results show that, the proposed approach outperforms the existing log-FDA using logarithmically increasing frequency increments in transmit energy focusing, sidelobe suppression, and array resolution performance.

[1]  Xingzhao Liu,et al.  Precisely beam steering for frequency diverse arrays based on frequency offset selection , 2009, 2009 International Radar Conference "Surveillance for a Safer World" (RADAR 2009).

[2]  M V Ivashina,et al.  An Optimal Beamforming Strategy for Wide-Field Surveys With Phased-Array-Fed Reflector Antennas , 2011, IEEE Transactions on Antennas and Propagation.

[3]  Wen-Qin Wang,et al.  Frequency Diverse Array Radar Cramér-Rao Lower Bounds for Estimating Direction, Range, and Velocity , 2014 .

[4]  M. Seçmen,et al.  Frequency Diverse Array Antenna with Periodic Time Modulated Pattern in Range and Angle , 2007, 2007 IEEE Radar Conference.

[5]  Jingjing Huang,et al.  Frequency diverse array with beam scanning feature , 2008, 2008 IEEE Antennas and Propagation Society International Symposium.

[6]  Hugh D. Griffiths,et al.  Frequency Diverse MIMO Techniques for Radar , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Hui Chen,et al.  Optimal Frequency Diverse Subarray Design With Cramér-Rao Lower Bound Minimization , 2015, IEEE Antennas and Wireless Propagation Letters.

[8]  Ijaz Mansoor Qureshi,et al.  Frequency Diverse Array Radar With Logarithmically Increasing Frequency Offset , 2015, IEEE Antennas and Wireless Propagation Letters.

[9]  W. Keizer Low Sidelobe Phased Array Pattern Synthesis With Compensation for Errors Due to Quantized Tapering , 2011, IEEE Transactions on Antennas and Propagation.

[10]  Wen-Qin Wang,et al.  Nonuniform Frequency Diverse Array for Range-Angle Imaging of Targets , 2014, IEEE Sensors Journal.

[11]  Cagri Cetintepe,et al.  Multipath Characteristics of Frequency Diverse Arrays Over a Ground Plane , 2014, IEEE Transactions on Antennas and Propagation.

[12]  Jinwoo Shin,et al.  Full-wave simulation of frequency diverse array antenna using the FDTD method , 2013, 2013 Asia-Pacific Microwave Conference Proceedings (APMC).

[13]  Michael C. Wicks,et al.  Forward-looking radar GMTI benefits using a linear frequency diverse array , 2006 .

[14]  C.J. Baker,et al.  Frequency diverse array radars , 2006, 2006 IEEE Conference on Radar.

[15]  Ijaz Mansoor Qureshi,et al.  Frequency Diverse Array Radar With Time-Dependent Frequency Offset , 2014, IEEE Antennas and Wireless Propagation Letters.

[16]  Wen-Qin Wang,et al.  Phased-MIMO Radar With Frequency Diversity for Range-Dependent Beamforming , 2013, IEEE Sensors Journal.